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This document contains (semi) formally written versions of some proofs
done in lecture on August 26. It should serve as one example of how to write
a proof.

Claim: For any m, congruence mod m is an equivalence relation.

Proof. Let m ∈ Z be arbitrary. We will show that congruence mod m is
reflexive, symmetric, and transitive, thus making it an equivalence relation.

First, we show the relation is reflexive. We claim that for all a ∈ Z, a ≡ a
(mod m). Let a be an arbitrary integer. Then a− a = 0, and m | 0, as every
integer divides 0. Thus, a ≡ a (mod m).

Second, we show the relation is symmetric. We claim that for all integers
a, b, a ≡ b (mod m) → b ≡ a (mod m). Let a, b be arbitrary integers.
Suppose a ≡ b (mod m). Then there exists some k ∈ Z with a − b = km.
Negate both sides to see that b − a = −km. Since −k is still an integer,
m | b− a and we see that b ≡ a (mod m).

Finally, we show that the relation is transitive. We claim that for all
integers a, b, c, if a ≡ b (mod m) and b ≡ c (mod m) then a ≡ c (mod m).
Let a, b, c be arbitrary integers, and assume a ≡ b (mod m) and b ≡ c
(mod m). Then there exist integers k, l with a− b = km and b− c = lm. We
can add the two equations together to get (a− b) + (b− c) = km + lm. By
further simplifying we get a− c = m(k + l). Since k + l is an integer, we see
that m | a− c, indicating that a ≡ c (mod m). Thus, congruence mod m is
an equivalence relation.
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