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This document contains (semi) formally written versions of some proofs
done in lecture on August 25. It should serve as one example of how to write
a proof.

Claim: For every set A, |A| < |P (A)|

Proof. Let A be an arbitrary set. If A is finite with cardinality n, we know
from our result in class that |P (A)| = 2n, so |A| < |P (A)|. Thus, suppose A
is infinite. To show that |A| < |P (A)| we will first show |A| ≤ |P (A)|, and
then we will show that |A| 6= |P (A)|. To show that |A| ≤ |P (A)|, we must
define a one-to-one function from A to P (A). Consider the function f(a) =
{a}. Clearly, this is well-defined on the specified domain and codomain. It
is also one-to-one, as the function’s output is defined uniquely by the input
value. Thus, |A| ≤ |P (A)|.

It remains to show that |A| 6= |P (A)|. Suppose towards a contradiction
that |A| = |P (A)|. Then there exists a bijection g : A→ P (A). Consider the
set Dg defined by the property a ∈ Dg ↔ a 6∈ g(a). First, note that Dg ⊆ A,
so Dg ∈ P (A). Thus, since g is bijection, it must be onto, so there must
exist some d ∈ A with g(d) = Dg. There are two cases to consider. First,
assume d ∈ Dg. Then d ∈ g(d) since Dg = g(d). However, our definition
of Dg states that d 6∈ Dg, so we have a contradiction. For the second case,
assume d 6∈ Dg. Then since Dg = g(d), d 6∈ Dg. However, according to the
definition of Dg, this means d ∈ Dg, which is again a contradiction. Thus,
in any case we have a contradiction and our initial assumption must have
been false: g cannot be onto, so there is no bijection between A and P (A),
so |A| 6= |P (A)|. Thus, we have shown that |A| < |P (A)|.

Claim: The set (0, 1) is uncountable.

1



Proof. We proceed via diagonalization. Assume towards the contrary that
(0, 1) is in fact countable. Then there exists a bijection f : Z+ → (0, 1).
Call ri ∈ (0, 1) the value of f at some positive integer i: f(i) = ri. We can
represent each ri as an infinite sequence of digits following a decimal point:
ri = 0.di1di2di3 . . .. Since f is a bijection, for any d ∈ (0, 1), there exists
some x ∈ Z+ with f(x) = d. We will find a contradiction by constructing an
argument d that is not in the image of f . Before constructing d we define
the following function g : {x | x ∈ Z, 0 ≤ x ≤ 9} → {x | x ∈ Z, 0 ≤ x ≤ 9}

g(n) =

{
0 n 6= 0

1 n = 0

Now we can define d. Again, since d ∈ (0, 1), d is a decimal point followed
by an infinite sequence of digits di: d = d1d2d3 . . .. We define each di by
di = g(f(i)i). Thus, for all i ∈ Z+ we have d 6= f(i) – the ith digit of d is
guaranteed to differ from the ith digit of f(i). Thus, f is not onto, so we
have found a contradiction and the set (0, 1) must be uncountable.
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