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This document contains (semi) formally written versions of some proofs
done in lecture on August 24. It should serve as one example of how to write
a proof.

Claim: The integers are countable.

Proof. To show that the integers are countable we define a function f : Z→
Z+ and show that it is a bijection. Define f as follows:

f(x) =

{
2x + 1 x ≥ 0

2(−x) x < 0

We claim that f is a bijective function. First, note that f is a well-defined
function. If x is non-negative, f(x) > 0 and is clearly an integer. Similarly,
if x is negative, f(x) is then positive. Thus, f always maps elements of
the domain onto the codomain and is thus well-defined. Now, we show that
f is one-to-one. Suppose a, b are arbitrary integers with f(a) = f(b). We
consider two cases. First, both f(a) and f(b) are even. Then both a and b are
negative, and we have 2(−a) = 2(−b) so a = b. In the second case, both f(a)
and f(b) are odd. Then a and b are both non-negative, and 2a+1 = 2b+1, so
a = b. Thus, f is one-to-one. It remains to show that f is onto. Let b ∈ Z+

be arbitrary. If b is odd, then there exists an integer k with b = 2k+ 1. Note
that f(k) = 2k + 1 = b. If b is instead even, there exists a positive integer k
with b = 2k. Note that f(−k) = 2k = b. Thus, in any case we can find an
integer input mapping to b, so f is onto. Since f is one-to-one and onto it is
a bijection, so the integers are countable.

Claim: If A is a finite set with | A |= n, then | P(A) |= 2n.
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Proof. First we introduce and prove a lemma:
Lemma: For any non-empty set B, and any b ∈ B, we have |{s | s ⊆ B, b ∈ s}| =

|{s | s ⊆ B, b 6∈ s}|.

Proof. Let B be an arbitrary infinite set, and let b ∈ B be arbitrary. Define
B1 = {s | s ⊆ B, b ∈ s} and B2 = {s | s ⊆ B, b 6∈ s}. We will show that
|B1| = |B2| be defining a bijection f : B1 → B2. Consider f(t) = t − {b}.
First, note that f is a well-defined function; it removes b from a set thus
mapping a set in B1 to one in B2. Now we claim f is one-to-one. Let s1, s2
be arbitrary elements of B1. If f(s1) = f(s2, then all their elements are the
same without including b. Thus, s1 = s2 and f is one-to-one. Now we show
f is onto. Let s3 be an arbitrary element of B2. Then f(s3 ∪ {b}) = s3 and
f is onto. Thus, f is a bijection and we see |B1| = |B2|.

We can now proceed with the original proof. We claim that for all finite
sets A with |A| = n, we have |P(A)| = 2n. We will show this by induction
on n. In the base case, n = 0. The only set of cardinality 0 is ∅. P(∅) = {∅},
and the cardinality of this set is 1. Since 20 = 1, our claim holds. Now
we consider the inductive case. Let k ≥ 0 be an arbitrary integer. Assume
that for any set A with cardinality k, then |P(A)| = 2k. Now consider an
arbitrary set X = {x1, x2, . . . , xk, xk+1}. We compute |P(X)|. Note that we
can partition P(X) into two disjoint sets: {x | x ⊆ X, xk+1 ∈ x} and {x | x ⊆
X, xk+1 6∈ x}. We compute the cardinalities of each one. First, note that {x |
x ⊆ X, xk+1 6∈ x} = P({x1, x2, . . . , xk}) since we are interested only in the
subsets that do not contain xk+1. Thus, |{x | x ⊆ X, xk+1 6∈ x}| = 2k, since
the set on the right has k elements. Now we consider |{x | x ⊆ X, xk+1 6∈ x}|.
By our lemma, the cardinality of this set is equal to the cardinality of {x |
x ⊆ X, xk+1 6∈ x}. We can thus compute the total cardinality:

|P(X)| = |{x | x ⊆ X, xk+1 ∈ x}|+ |{x | x ⊆ X, xk+1 6∈ x}|
= 2k + 2k

= 2k+1

Clearly, the inductive case holds as well, and for any set A with | A |= n, we
see | P(A) |= 2n.
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