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This document contains (semi) formally written versions of some proofs
done in lecture. It should serve as one example of how to write a proof.

We define the set T of Full Binary Trees as follows:

• r ∈ T is a single vertex

• For any trees t1, t2 ∈ T , a root r with left child t1 and right child t2 is
also in T .

We also define the following functions E and V computing the number
of edges and vertices in a full binary tree respectively.

E(r) = 0 where r a single vertex

E(t) = E(t1) + E(t2) + 2 where t1, t2 are the left and right children of t

V (r) = 1 where r a single vertex

V (t) = V (t1) + E(t2) + 1 where t1, t2 are the left and right children of t

Claim: For all trees t ∈ T , V (t) = E(t) + 1

Proof. We proceed by induction. Consider first a tree r ∈ T consisting of a
single root node. By definition, E(r) = 0 and V (r) = 1 so V (r) = E(r) + 1
and the property holds. Now, let t1 and t2 be arbitrary trees with V (t1) =
E(t1) + 1 and V (t2) = E(t2) + 1. Now, consider t′ ∈ T , the tree formed by
adding a new vertex with left child t1 and right child t2. We compute the
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number of vertices in t′:

V (t′) = V (t1) + V (t2) + 1

= E(t1) + 1 + E(t2) + 1 + 1 By the inductive hypothesis

= E(t1) + E(t2) + 2 + 1

= E(t′) + 1 By definition

Thus, for any tree tinT we see that V (t) = E(t) + 1.

Consider the following recursively defined set S:

• 3 ∈ S

• If x ∈ S, then 2x + 1 ∈ S

Claim: For all x ∈ S, x mod 4 = 3

Proof. We proceed by induction. Consider first the base case: 3 mod 4 =
3, so our claim holds for the initial element of S. Now, let x ∈ S be an
arbitrary element with x mod 4 = 3. Now we compute 2x + 1 mod 4.
Since x mod 4 = 3, there exists an integer y with x = 4y + 3. Thus,
2x + 1 = 2(4y + 3) + 1 = 8y + 7 = 4(2y + 1) + 3. Thus, since 2y + 1 is also
an integer, 2x + 1 mod 4 = 3 and we see that the property is true of any
x ∈ S.
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