
Supplemental Lecture Notes

CSE 20

August 16, 2021

This document contains (semi) formally written versions of some proofs
done in lecture on August 16. It should serve as one example of how to write
a proof.

Claim: For all non-negative integers n, (1 + 1
2
)n ≥ 1 + n

2
.

Proof. Let P (n) be the proposition that for some integer n ≥ 0, we have
(1 + 1

2
)n ≥ 1 + n

2
. We claim that P (n) holds for all non-negative integers n

and proceed by induction. First, consider the base case P (0). Substituting
0 for n we see (1 + 1

2
)0 = 1 and 1 + 0

2
= 1. Thus, the two quantities are equal

and our inequality holds. Now we consider the inductive case. It remains to
show that for all n ≥ 0, P (n) =⇒ P (n + 1). Let k ≥ 0 be arbitrary. We
assume P (k) holds and wish to show P (k + 1):

(
1 +

1

2

)k+1

=

(
1 +

1

2

)k (
1 +

1

2

)
≥
(

1 +
k

2

)(
1 +

1

2

)
by the inductive hypothesis

= 1 +
k

2
+

1

2
+

k

4

≥ 1 +
k

2
+

1

2

= 1 +
k + 1

2

Thus, we see
(
1 + 1

2

)k+1 ≥ 1 + k+1
2

so P (k) implies P (k + 1). As we
have also shown P (0), we can conclude by induction that P (n) holds for all
non-negative integers n.
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Claim: For all non-negative integers n,
∑n

i=0(2i + 1) = (n + 1)2

Proof. Let P (n) be the proposition that for some non-negative integer n,∑n
i=0(2i + 1) = (n + 1)2. We wish to show that P (n) holds for all n. We

proceed by induction. First, consider P (0). By substitution we see that∑0
i=0(2i + 1) = (0 + 1) = 0 = (0 + 1)2. It remains to show that for all

non-negative integers k, P (k) implies P (k + 1). Let k be an arbitrary non-
negative integer. Assume P (k) holds. We wish to prove P (k + 1). The sum
becomes

k+1∑
i=0

(2i + 1) =
k∑

i=0

(2i + 1) + (2(k + 1) + 1)

= (k + 1)2 + (2(k + 1) + 1) by the inductive hypothesis

= k2 + 2k + 1 + 2k + 2 + 1

= k2 + 4k + 4

= (k + 2)2

Thus, we see that P (k + 1) holds. As we have shown that P (0) is true,
and that for all non-negative integers k P (k) =⇒ P (k+1), we can conclude
by induction that P (n) holds for all non-negative integers n.

Claim: For any non-negative integer n, if A is a set of size n, then for
any finite set B we have |A×B| = |A| |B|.

Proof. Let P (n) be the proposition that for some non-negative integer n, if
A is a set of size n, then for any finite set B we have |A×B| = |A| |B|. We
will show by induction that ∀nP (n). First, consider P (0). If A is of size 0,
then A is the emptyset and for any finite set B, A×B is also empty and its
size is 0. Thus, P (0) holds. We move on to the inductive step, claiming that
for all non-negative integers k, P (k) =⇒ P (k + 1). Let k ≥ 0 be arbitrary.
Let C = {x1, x2, . . . , xk} be an arbitrary set of size k. Let B be an arbitrary
set of finite size. We assume that P (k) holds, so |C ×B| = |C| |B| = k |B|.
Now, let xk+1 be an arbitrary element such that A = C ∪ {xk+1} and A has
size k + 1. Now consider the cartesian product A × B. By definition of the
cartesian product, A × B = (C × B) ∪ {(xk+1, b) | b ∈ B}. Since xk+1 6∈ B,
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we know C ×B and {(xk+1, b) | b ∈ B} are disjoint. Thus, their intersection
is empty, so by the equality on slide 23 we have |A×B| = |C ×B| + |B| =
|C| |B| + |B|. By the inductive hypothesis we can further simplify this to
k |B|+ |B| = (k+1) |B| = |A| |B|. Thus, P (k) =⇒ P (k+1). Since we have
shown that P (0) is true, and that P (k) =⇒ P (k + 1) for all non-negative
integers k, we can infer by induction that P (n) is true for all non-negative
integers n.
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