
Supplemental Lecture Notes

CSE 20

August 12, 2021

This document contains (semi) formally written versions of some proofs
done in lecture on August 12. It should serve as one example of how to write
a proof.
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Claim: Three of any 25 unique chosen days must fall in the same month of
the year.

Proof. Suppose to the contrary that we can pick 25 unique days of the year
while ensuring that no more than two fall in any given month. There are 12
months, so with a maximum of two days per month this means we picked at
most 24 days. This is a contradiction, so our original assumption was false
and three days must fall in the same month.
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Claim: There are infinitely many composite numbers.

Proof. For the purposes of contradiction, assume instead that there are only
a finite number of composite numbers. Let {C1, C2, . . . , Cn} be the finite set
of composites. By definition, we know that all Ci are greater than 1. Now,
consider the product C ′ = C1×C2× . . .×Cn. Since all Ci > 1, we know that
C ′ > Ci for all i. We also know that C ′ is composite, as it is the product
of composite numbers. Thus, C ′ is composite and it is not include in our
original finite set of n composite numbers, so we have found a contradiction
and the set of composites must be infinite.
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Claim: There exist irrational numbers x, y where xy is rational.

Proof. By our proof above, we know that
√

2 is irrational. Consider the

quantity
√

2
√
2
. There are two cases: either

√
2
√
2

is rational or it is not. If
it’s rational, we can set x = y =

√
2 and we’ve found irrational x and y such

that xy is rational. Now we consider the other case and assume that
√

2
√
2

is irrational. Let x =
√

2
√
2

and y =
√

2. Both are irrational. In this case,

we have xy = (
√

2
√
2
)
√
2 =
√

2
2

= 2. 2 is clearly rational. Since we assumed
both x and y are irrational, we have again found satisfying values for x and
y. Thus, in all cases it is possible to construct irrational values x and y where
xy is rational.
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Claim: The set {n ∈ Z | ∃k ∈ Z(n = 2k+2)} equals {n ∈ Z | ∃l ∈ Z(n = 2l)}

Proof. First, we show that {n ∈ Z | ∃k ∈ Z(n = 2k + 2)} ⊆ {n ∈ Z | ∃l ∈
Z(n = 2l)}. Let x ∈ {n ∈ Z | ∃k ∈ Z(n = 2k + 2)} be arbitrary. Then there
exists an integer k with x = 2k + 2. Let l = k + 1. Then x = 2l. Therefore
x ∈ {n ∈ Z | ∃l ∈ Z(n = 2l)} and our subset relation holds. It remains
to show that {n ∈ Z | ∃l ∈ Z(n = 2l)} ⊆ {n ∈ Z | ∃k ∈ Z(n = 2k + 2)}
Let y ∈ {n ∈ Z | ∃l ∈ Z(n = 2l)} be arbitrary. By definition, there
exists an integer l with y = 2l. Let k = l − 1. Then l = k + 1 and
y = 2(k + 1) = 2k + 2. Thus, y ∈ {n ∈ Z | ∃k ∈ Z(n = 2k + 2)}. and
{n ∈ Z | ∃l ∈ Z(n = 2l)} ⊆ {n ∈ Z | ∃k ∈ Z(n = 2k + 2)}. As we have
shown set containment in both directions, the two sets are equal.
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Claim: For any sets A,B,C, if A ∪B ⊆ C then A ⊆ C and B ⊆ C.

Proof. Let A,B,C be arbitrary sets such that A ∪ B ⊆ C. Let x ∈ A be
arbitrary. Since x ∈ A, we know that x ∈ A ∪ B. Since A ∪ B ⊆ C, we
can also infer that x ∈ C. Thus, A ⊆ C. It remains to show that B ⊆ C.
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Let y ∈ B be arbitrary. Since y ∈ B, we also know that y ∈ A ∪ B. Since
A∪B ⊆ C, we in turn infer that y ∈ C. Since y ∈ B is arbitrary and y ∈ C,
we see that B ⊆ C and our original claim holds.
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