
Supplemental Lecture Notes

CSE 20
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This document contains (semi) formally written versions of some proofs
done in lecture on August 11. It should serve as one example of how to write
a proof.
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Claim: For all integers a, b, we have max(a, b) + min(a, b) = a + b

Proof. Let a, b ∈ Z be arbitrary. We consider two cases: either a ≤ b, or
a > b. In the first case, we assume a ≤ b. Then by the definitions of
maximum and minimum, we know max(a, b) = b and min(a, b) = a. Thus,
max(a, b)+min(a, b) = a+b. Now, consider the second case. Suppose instead
that a > b. In this case, max(a, b) = a and min(a, b) = b. Again, we know
that max(a, b) + min(a, b) = a + b. In both cases, the sums of the maximum
and minimum become a + b, so our claim holds.
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Claim: If n ∈ Z is not a multiple of 3, then n2 − 1 is a multiple of 3.

Proof. Let n ∈ Z be arbitrary. We assume n is not a multiple of 3. We must
consider two cases: either n mod 3 = 1 or n mod 3 = 2. First, assume n
mod 3 = 1. Then, there exists some k ∈ Z with n = 3k+1. We now consider
the quantity n2−1. We can rewrite this as (3k+1)2−1 = 9k2 +6k+1−1 =
9k2 + 6k = 3(3k2 + 2). Since the integers are closed under addition and
multiplication, 3k2 + 2 is an integer and n2 − 1 is therefore divisible by 3.
Now we consider the second case and assume that instead there exists some
k ∈ Z where n = 3k+ 2. We now consider again the quantity n2−1. We can
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rewrite this as (3k+2)2−1 = 9k2+12k+4−1 = 9k2+12k+3 = 3(3k2+4k+1).
Since the integers are closed under addition and multiplication, 3k2 + 4k + 1
is an integer and n2−1 is therefore divisible by 3. Since n2−1 is a multiple of
3 in all cases, we can infer that its a multiple of three whenever n is not.
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Claim: The real number
√

2 is not rational.

Proof. Suppose for the purposes of a contradiction that
√

2 is in fact rational.
Then by definition there exist integers p, q such that

√
2 = p

q
, q 6= 0, and p

and q do not share any factors. By squaring both sides we get 2 = p2

q2
, in turn

implying that 2q2 = p2. Thus, p2 is even since it’s divisible by two. We can
also infer that p is even from our result in class on August 10. By definition,
there exists an integer k with p = 2k. Thus, p2 = (2k)2 = 4k2. Since we also
showed that 2q2 = p2, we now have 2q2 = 4k2, implying that q2 = 2k2. Thus,
q2 is even and q is in turn even. We have showed that both p and q are even,
which is impossible as we assumed that they share no common factors. We
have arrived at a contradiction, indicating that our original assumption was
false and

√
2 is irrational.
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Claim: For integers k > 1, 2k − 1 is not a perfect square.

Proof. By way of contradiction assume that there exists some k such that
k > 1 and 2k − 1 is a perfect square. Then there exists an integer m with
2k−1 = m2. Since k > 1, we know that 2k is even. Thus, 2k−1 is odd and m2

is also odd. Therefore m is odd as well. By definition, this means that there
exists some integer t with m = 2t + 1. Thus, m2 = (2t + 1)2 = 4t2 + 4t + 1.
Now we have 2k−1 = 4t2 +4t+1, so we also have 2k = 4t2 +4t+2. Dividing
both sides by 2 we see that 2k−1 = 2t2 + 2t+ 1. Since t2 + t is an integer, and
2t2 + 2t + 1 = 2(t2 + t) + 1, we know that 2k−1 is odd. This is only possible
if k − 1 = 0, indicating that k = 1. However, we assumed that k > 1, so we
have arrived at aa contradiction and 2k − 1 must not be a perfect square for
all integers k > 1.
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