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This document contains (semi) formally written versions of some proofs
done in lecture on August 10. It should serve as one example of how to write
a proof.
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Claim: If n ∈ Z is even, then so is n2

Proof. Let n ∈ Z be arbitrary. Suppose n is even. By definition, there exists
k ∈ Z such that n = 2k. Thus, n2 = 4k2 = 2(2k2). Since the integers are
closed under multiplication, 2k2 is an integer. Thus, we know that n2 is even
by definition.
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Claim: If n ∈ Z is odd, then so is n2

Proof. Let n ∈ Z be arbitrary. Suppose n is odd. Then by definition there
exists an integer k such that n = 2k + 1. Thus, we have

n2 = (2k + 1)2

= 2k2 + 4k + 1

= 2(k2 + 4k) + 1

Since the integers are closed under multiplication and addition, k2 + 4k is
also an integer and n2 is therefore odd by definition.
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Claim: If x2 − 6x + 5 is even, then x is odd.

Proof. We consider instead the contrapositive: for all integers x, if x is even,
then x2 − 6x + 5 is odd. Let x ∈ Z be arbitrary. Suppose x is even. By
definition, there exists an integer k such that x = 2k. Then we have

x2 − 6x + 5 = (2k)2 − 6(2k) + 5

= 4k2 − 12k + 5

= 2(2k2 − 6k + 2) + 1

Since the integers are closed under addition, subtraction, and multiplication,
we know 2k2−6x+2) is an integer. Therefore, we have that that x2−6x+5
is odd by definition..
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Claim: For integers n, a, b, if n - ab then n - a and n - b.

Proof. Let n, a, b ∈ Z be arbitrary. We instead prove the contrapositive of
our claim: if n | a or n | b, then n | ab. We must consider two cases. First,
suppose n | a. Then, by definition, there exists some k ∈ Z where a = nk.
Thus, ab = nkb. Since the integers are closed under multiplication, kb is an
integer and n | ab by definition. For the second case, suppose instead that
n | b. Then, by definition, there exists some k ∈ Z where b = nk. Thus,
ab = nka. Since the integers are closed under multiplication, ka is an integer
and n | ab by definition.
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