CSE 130 Midterm, Winter 2019

Nadia Polikarpova

Feb 11, 2019

NAME

SID

« DO NOT TURN THIS PAGE OVER BEFORE WE TELL YOU TO
e You have 50 minutes to complete this exam.
o Where limits are given, write no more than the amount specified.

e You may refer to a double-sided cheat sheet, but no electronic ma-
terials.

» Avoid seeing anyone else’s work or allowing yours to be seen.
e Do not communicate with anyone but an exam proctor.

o If you have a question, raise your hand.

e Good luck!

Part I. Lambda Calculus [20 pts + 5 extra]

Q1: Reductions [10 pts]

For each A-term below, check the box next to each valid reduction of that
term. It is possible that none, some, or all of the listed reductions are valid.
Reminder:

« =a> stands for an a-step (a-renaming)

« =b> stands for a 3-step (f-reduction)

o =~> stands for a sequence of zero or more steps, where each step is
either an a-step or a (-step, and the right-hand side is in normal form

1.1 [5 pts]

\xy > (N\zx >x2z) (xvy)

(A) =b> \x y > y x []
(B) =b> \z x -> x z L]
(C) =b> \x y > (\x > x (x y)) L]
(D) =a> \xy > (\z a > a z) (xy) []
(E) =a>\xy > (\zy >y 2) (xy) L]
1.2 [5 pts]

(A) =b> (\x -> x) (apple (\z -> 2)) []
(B) =b> (\y -> apple y) (\z -> 2) []
(C) =a> (\z => z) (\y -> apple y) (\z -> 2) L]
(D) =a> (\x > x) (\y -> orange y) (\z -> 2) L]
(E) =~> apple (\z -> z) []

Q2: Factorial [10 pts + 5 extra]

In this task you will implement the factorial function in lambda calculus.
Your implementation of FACT should satisfy the following test cases:

eval factO : eval factl : eval fact2 : eval fact3 :
FACT ZERO FACT ONE FACT TWO FACT THREE
=~> ONE =~> ONE =~> TWO =~> SIX

You can use any function defined in the “Lambda Calculus Cheat Sheet” at
the end of this exam, including the fixpoint combinator FIX. You are allowed
(but not required) to define a helper function STEP.

You will get 5 extra points if your implementation does not use the fixpoint
combinator. Hint: to implement this version, define the helper function STEP
that takes in a pair, similarly to SKIP1 from the homework.

let STEP

let FACT

Part II. Datatypes and Higher-Order Func-
tions [30 pts]

Q3: Files and Directories [30 pts]

We can represent a directory structure using the following Haskell datatype:

data Entry =
File String Int -—- ftle: mame and size
| Dir String [Entry] -- directory: name and child entries

For example, the value:

homedir = Dir "home"
[File "todo" 256
, Dir "HWO" [File "Makefile" 575]
, Dir "HW1" [File "Makefile" 845, File "HW1.hs" 3007]
]

represents the following directory structure:

home

|---todo (256 bytes)

|

| ---HWO

| | ---Makefile (575 bytes)

|

| ---HW1
| -—--Makefile (845 bytes)
|---HW1.hs (3007 bytes)

In your solutions you can use any library functions on integers (e.g. arithmetic
operators), but only the following functions on lists:

== :: String -> String -> Bool -- equality on strings
(++) c: [al => [a]l —> [a] -- append on any lists
map o (a ->Db) > [a] -> [b]

filter :: (a -> Bool) —-> [a] —-> [al

foldr :: (a->b ->b) =>b -> [a] > b

foldl :: (b ->a ->b) >b -> [a] > b

3.1 Size [10 pts]
Implement the function size that computes the total size of an entry in

bytes. You are allowed to introduce a helper function using a where clause,
although we encourage you to use a higher-order function instead.

Your implementation must satisfy the following test cases

size (File "todo" 256)
==> 256
size (Dir "haskell-jokes" [])

size homedir
==> 4683 -- 256 + 575 + 845 + 3007

size :: Entry -> Int

3.2 Find [20 pts]

Implement the function find that finds all files with a given name inside a
given entry. More precisely, find path e f finds all files with name f inside
the entry e, where path is the full path to e, and returns the list of full paths
to those files.

Your implementation must satisfy the following test cases

find "./home" (File "todo" 256) "todo"
==> ["./home/todo"]
find "./home" (Dir "todo" []) "todo"

==> []
find "." homedir "Makefile"
==> ["./home/HW1/Makefile", "./home/HWO/Makefile"]

-— T order ©s trrelevant

You are not allowed to introduce recursive helper functions and must use
higher-order functions instead.

find :: String -> Entry -> String -> [String]

Lambda Calculus Cheat Sheet

Here is a list of definitions you may find useful for Q2

let
let
let

let
let
let

let
let
let
let
let
let
let

let
let
let
let
let
let

-— Booleans —-
TRUE = \x
FALSE = \x
ITE = \b

-— Pazrs
PAIR = \x
FST = \p
SND = \p

-— Numbers —--—-
ZERO = \f
ONE = \f
TWO = \f
THREE = \f
FOUR = \f
FIVE = \f
SIX = \f

—-— Arithmetic
INC = \n
ADD = \n
MUL = \n
ISZ = \n
SKIP1 = \f
DEC = \n

-— Recursion -
FIX

let

yb->bxy
-> p TRUE
-> p FALSE

-> x

-> f x

> f (f %)

-> f (f (f x))

> f (f (f (f x)))

> f (f (£ (£ (£ x))))

> f (£ (£ (< ¢ x)))))

LT T T -

fx-—>f (nf x)

m -> n INC m

m -> n (ADD m) ZERO

-> n (\z -> FALSE) TRUE

p -> PAIR TRUE (ITE (FST p) (f (SND p)) (SND p))
-> SND (n (SKIP1 INC) (PAIR FALSE ZERO))

= \stp > (\x -> stp (x x)) (\x -> stp (x %))

	Part I. Lambda Calculus [20 pts + 5 extra]
	Q1: Reductions [10 pts]
	1.1 [5 pts]
	1.2 [5 pts]

	Q2: Factorial [10 pts + 5 extra]

	Part II. Datatypes and Higher-Order Functions [30 pts]
	Q3: Files and Directories [30 pts]
	3.1 Size [10 pts]
	3.2 Find [20 pts]

	Lambda Calculus Cheat Sheet

