CSE 130 Midterm, Fall 2019

Nadia Polikarpova

Nov 1, 2019

NAME

SID

« DO NOT TURN THIS PAGE OVER BEFORE WE TELL YOU TO
e You have 50 minutes to complete this exam.
o Where limits are given, write no more than the amount specified.

* You may refer to a double-sided cheat sheet, but no electronic ma-
terials.

» Avoid seeing anyone else’s work or allowing yours to be seen.
e Do not communicate with anyone but an exam proctor.
o If you have a question, raise your hand.

e Good luck!

Part I. Lambda Calculus [20 pts]

Q1: Reductions [10 pts]

Note: the correct answer might have none, some, or all of the boxes checked.

1.1 [5 pts]

Check the box next to each term that contains exactly one redex (i.e. there
is one and only one way to apply a beta step to this term).

(A) (\x => x) (\x —> x) []
(B) \x > x (\x -> x) L]
(C) £ (\x > x) (\x -> x) L]
(D) (\x > x) £ (\x -> x) []
(E) \f x > f (f X)) yz []
1.2 [5 pts]

Check the box next to each valid reduction.
Reminder:

« =a> stands for an a-step (a-renaming)
» =b> stands for a S-step (f-reduction)

(\x y > (\x y => x) y x) apple banana
(A) =b> (\x y > (\y —> y) x) apple banana []

l
)
v
N
/
»

<

I
v

(\x x => x) y x) apple banana []

)
(B)
(C) =a> (\x y > (\x z -> x) y x) apple banana []
(D) =b> (\y > (\x y —> x) y apple) banana []
(E)

=b> (\y -> (\x y -> apple) y apple) banana []

Q2: 2048 [10 pts]

Write a lambda term that evaluates to the Church representation of the
number 2048.

Your term has to fit on one line and be a complete, syntactically valid
lambda term without abbreviations. You cannot define new names, but you
can use any function defined in the “Lambda Calculus Cheat Sheet” at the
end of this exam.

Part II. Datatypes and Recursion [30 pts]

Q3: Reverse Polish Notation [30 pts]

Imagine you are implementing an arithmetic calculator in Haskell, and you
are using a datatype Expr to represent expressions and an auxiliary datatype
Op to represent binary operations:

data Op = Plus | Minus | Times

data Expr = Num Float -- floating point constant
| Bin Op Expr Expr -- binary operation

Recall that reverse Polish notation (RPN), also known postfiz notation, is
a mathematical notation in which operators follow their operands. Its main
advantage is that you can write any arithmetic expression in RPN unambigu-
ously without any parentheses. For example, here are some expressions and
their RPN versions:

Expression RPN

3+ 5 35 +

(3 +5) 2 35+ 2 %
3+ 5 % 2 352 % +
34+ 2% (5 -4) 3254 - %+

We can represent an RPN expression in Haskell as a [list of tokens, where
each token is either an operand or an operation:

data Token = Operand Float | Operation Op
For example, the RPN expression 3 5 + is represented as
[Operand 3, Operand 5, Operation Plus]

Some lists do not represent valid RPN expressions, e.g. the following list is
an tnvalid RPN:

[Operand 5, Operation Plus]

In your solutions you can use list constructors ([] and (:)), bracket notation
(e.g. [1, 2, 3]) and the list append function ((++)).

3.1 To RPN [10 pts]

Implement the function toRPN that converts an expression into RPN.

toRPN :: Expr -> [Token]

3.2 From RPN [20 pts]
Implement the function fromRPN that converts from RPN into an expression.

Your function must be tail-recursive. If given an invalid RPN as input,
your function must throw an error using error "Invalid RPN".

Hint: Introduce an auxiliary function with an extra parameter that stores all
current top-level expressions (i.e. expressions that are still waiting for their
parent binary operation).

fromRPN :: [Token] -> Expr

Lambda Calculus Cheat Sheet

Here is a list of definitions you may find useful for Q2

let
let
let

let
let
let

let
let
let
let
let
let
let

let
let
let
let
let
let

-— Booleans —-
TRUE = \x
FALSE = \x
ITE = \b

-— Pazrs
PAIR = \x
FST = \p
SND = \p

-— Numbers —--—-
ZERO = \f
ONE = \f
TWO = \f
THREE = \f
FOUR = \f
FIVE = \f
SIX = \f

—-— Arithmetic
INC = \n
ADD = \n
MUL = \n
ISZ = \n
SKIP1 = \f
DEC = \n

yb->bxy
-> p TRUE
-> p FALSE

-> X

-> f x

> f (f %)

-> f (f (f x))

> f (£ (£ (f x)))

> f (£ (£ (£ (f x))))

> f (f (f (£ (£ (f x)))))

LT T T -

fx-—>f (nf x)

m -> n INC m

m -> n (ADD m) ZERO

-> n (\z -> FALSE) TRUE

p —> PAIR TRUE (ITE (FST p) (f (SND p)) (SND p))
-> SND (n (SKIP1 INC) (PAIR FALSE ZERO))

	Part I. Lambda Calculus [20 pts]
	Q1: Reductions [10 pts]
	1.1 [5 pts]
	1.2 [5 pts]

	Q2: 2048 [10 pts]

	Part II. Datatypes and Recursion [30 pts]
	Q3: Reverse Polish Notation [30 pts]
	3.1 To RPN [10 pts]
	3.2 From RPN [20 pts]

	Lambda Calculus Cheat Sheet

