
CSE 130 Final, Winter 2019

Nadia Polikarpova

March 22, 2019

NAME ____________________________________

SID ____________________________________

• DO NOT TURN THIS PAGE OVER BEFORE WE TELL YOU TO

• You have 180 minutes to complete this exam.

• Where limits are given, write no more than the amount specified.

• You may refer to a double-sided cheat sheet, but no electronic
materials.

• Avoid seeing anyone else’s work or allowing yours to be seen.

• Do not communicate with anyone but an exam proctor.

• If you have a question, raise your hand.

• Good luck!

1

Q1: Lambda Calculus [25 pts]

Below you will find five lambda terms, F1 through F5 (along with helper
functions, H1 and H2). Each one of them implements one of ten possible
functions, (A) through (J). Your task is to guess which term implements
which function.

Fill in the table below so that each column has exactly one mark, and each row
has at most one mark. You get 5 points for each lambda term whose meaning
you guessed correctly. You will find the definitions of all the functions we
used in Appendix I at the end of the exam.

let F1 = \n -> n NOT TRUE

let F2 = \n -> n (MUL TWO) ONE

let F3 = \x y -> ISZ (SUB y x) x y

let H1 = \p -> PAIR (NOT (FST p)) (ITE (FST p) (INC (SND p)) (SND p))
let F4 = \n -> SND (n H1 (PAIR FALSE ZERO))

let H2 = \p -> PAIR (INC (FST p)) (ADD (FST p) (SND p))
let F5 = \n -> SND (n H2 (PAIR ONE ZERO))

F1 F2 F3 F4 F5

(A) max of x and y [] [] [] [] [] (A)
(B) x < y [] [] [] [] [] (B)
(C) x > y [] [] [] [] [] (C)
(D) n squared [] [] [] [] [] (D)
(E) 2 to the power of n [] [] [] [] [] (E)
(F) n divided by 2 [] [] [] [] [] (F)
(G) is n even? [] [] [] [] [] (G)
(H) constant false [] [] [] [] [] (H)
(I) n-th fibonacci [] [] [] [] [] (I)
(J) sum from 0 to n [] [] [] [] [] (J)

2

Q2: Haskell: Files and Directories [35 pts]

Recall the Haskell representation of files and directories from the midterm.
We can represent a directory structure using the following Haskell datatype:

data Entry =
File String Int -- file: name and size

| Dir String [Entry] -- directory: name and child entries

For example, the value:

homedir = Dir "home"
[File "todo" 256
, Dir "HW0" [File "Makefile" 575]
, Dir "HW1" [File "Makefile" 845, File "HW1.hs" 3007]
]

represents the following directory structure:

home
|---todo (256 bytes)
|
|---HW0
| |---Makefile (575 bytes)
|
|---HW1

|---Makefile (845 bytes)
|---HW1.hs (3007 bytes)

In your solutions you can use any library functions on integers (e.g. arithmetic
operators), but only the following functions on lists:

(==) :: String -> String -> Bool -- equality on strings
(++) :: [a] -> [a] -> [a] -- append on any lists

3

2.1 Tail-Recursive Size [15 pts]

Recall the function size that computes the total size of an entry in bytes.
Implement a tail-recursive version of this function, using a helper function
loop with the signature provided below. Hint: the second argument of loop
is a list of entries yet to be processed.

Your implementation must satisfy the following test cases

size (File "todo" 256)
==> 256

size (Dir "haskell-jokes" [])
==> 0

size homedir
==> 4683 -- 256 + 575 + 845 + 3007

size :: Entry -> Int

size e = __

where

loop :: Int -> [Entry] -> Int

4

2.2 Remove [15 pts]

Implement the higher-order function remove p e, which recursively traverses
all the sub-entries inside e and removes those that satisfy the predicate p.

Your implementation must satisfy the following test cases (here nameOf is a
function that returns the name of an entry):

remove (\e -> nameOf e == "Makefile") homedir
==> Dir "home"

[File "todo" 256
, Dir "HW0" []
, Dir "HW1" [File "HW1.hs" 3007]
]

remove (\e -> nameOf e == "HW1") homedir
==> Dir "home"

[File "todo" 256
, Dir "HW0" [File "Makefile" 575]
]

remove (\e -> nameOf e == "home") homedir
-- the current directory is never removed (only sub-entries),
-- so return homedir unchanged:
==> Dir "home"

[File "todo" 256
, Dir "HW0" [File "Makefile" 575]
, Dir "HW1" [File "Makefile" 845, File "HW1.hs" 3007]
]

5

remove :: (Entry -> Bool) -> Entry -> Entry

2.3 Clean up [5 pts]

Using remove from 2.2, implement the function cleanup e that removes all
empty subdirectories of e. Your implementation must satisfy the following
test cases:

cleanup (Dir "temp" [Dir "drafts" [], File "todo" 256])
==> Dir "temp" [File "todo" 256]

cleanup (File "todo" 256)
==> File "todo" 256

cleanup (Dir "drafts" [])
-- the current directory is never removed (only sub-dirs):
==> Dir "drafts" []

cleanup :: Entry -> Entry

6

Q3: Semantics and Type Systems [20 pts]

In this part, you will answer questions about the operational semantics and
the type system of Nano2, both given in Appendix II at the end of the exam.
In each question, mark all the answers that apply; it is possible that none,
some, or all of the answers are correct.

3.1 Reduction 1 [5 points]

Which of these single-step reductions are valid according to the operational
semantics of Nano2?

(A) 5 => 5 []

(B) (\x -> x) (1 + 2) => (\x -> x) 3 []

(C) (\x -> x) (1 + 2) => 1 + 2 []

(D) (\x -> x) (1 + 2) => 3 []

(E) (1 + 2) + (\x -> x) => 3 + (\x -> x) []

3.2 Reduction 2 [5 points]

Which of the following rules are used in the derivation of the reduction

(\x y -> (x + y) + (1 + 2)) (3 + 4) 5 => ???

(A) Add-L []

(B) Add-R []

(C) Add []

(D) App-L []

(E) App-R []

7

3.3 Typing 1 [5 points]

Which of the following typing judgments are valid according to the type
system of Nano2?

(A) [] |- \x -> x :: Int -> Int []

(B) [] |- \x -> x :: a -> a []

(C) [] |- \x -> x :: forall a . a -> a []

(D) [] |- x :: Int []

(E) [x: a] |- x :: forall a . a []

3.4 Typing 2 [5 points]

Which of the following rules are used in the derivation of the typing judgment

[] |- \x y -> x y :: forall a . forall b . (a -> b) -> a -> b

(A) T-Var []

(B) T-Abs []

(C) T-App []

(D) T-Inst []

(E) T-Gen []

8

Q4: Prolog: Regular expressions [30 pts]

In this question, we will implement regular expression matching in Prolog.
More precisely, your task is to define a predicate match(R, S) where R is a
term that describes the regular expression and S is a list (which can contain
atoms and numbers).

We will represent regular expressions using the following terms:

• oneOf(Xs) matches a singleton list whose element is one of the elements
of the list Xs

• seq(R1,R2) matches any list that can be split into a prefix and a suffix,
where the prefix matches R1 and the suffix matches R2

• star(R) matches zero or more repetitions of R

Once you are done, your implementation should pass the following tests:

match(oneOf([0,1,2,3]), [1]).
true.

match(oneOf([0,1,2,3]), []).
false.

match(oneOf([0,1,2,3]), [1,3,0]).
false.

match(seq(oneOf([0,1,2,3]), oneOf([0,1,2,3])), [1,3]).
true.

match(seq(oneOf([0,1,2,3]), oneOf([0,1,2,3])), [1]).
false.

match(seq(oneOf([0,1,2,3]), oneOf([0,1,2,3])), [c,1]).
false.

match(star(oneOf([0,1,2,3])), [1,3,0]).
true.

9

match(star(oneOf([0,1,2,3])), []).
true.

match(star(oneOf([0,1,2,3])), [c,s,e,1,3,0]).
false.

match(seq(oneOf([c]), seq(oneOf([s]), seq(oneOf([e]),
star(oneOf([0,1,2,3]))))), [c,s,e,1,3,0]).

true.

match(seq(oneOf([c]), seq(oneOf([s]), seq(oneOf([e]),
star(oneOf([0,1,2,3]))))), [c,s,1,3,0]).

false.

In each question below, you will define one or more rules for the match
predicate for each of the three kinds of regular expressions. You can use
patterns in the head of the rule, but cannot introduce auxiliary predicates.
The only library predicate you can use is append(Xs,Ys,Zs), which is true
when the list Zs is the result of appending Ys to Xs.

4.1 One of [10 points]

Define the rule(s) for match(oneOf(Xs), S):

__

__

__

10

4.2 Sequential Composition [10 points]

Define the rule(s) for match(seq(R1, R2), S):

__

__

__

__

__

4.3 Kleene Star [10 points]

Define the rule(s) for match(star(R), S):

__

__

__

__

__

__

11

Appendix I: Lambda Calculus Cheat Sheet

Here is a list of definitions you may find useful for Q2

-- Booleans --------------------------------

let TRUE = \x y -> x
let FALSE = \x y -> y
let ITE = \b x y -> b x y
let NOT = \b x y -> b y x

-- Pairs -----------------------------------

let PAIR = \x y b -> b x y
let FST = \p -> p TRUE
let SND = \p -> p FALSE

-- Numbers ---------------------------------

let ZERO = \f x -> x
let ONE = \f x -> f x
let TWO = \f x -> f (f x)
let THREE = \f x -> f (f (f x))

-- Arithmetic ------------------------------

let INC = \n f x -> f (n f x)
let ADD = \n m -> n INC m
let MUL = \n m -> n (ADD m) ZERO
let ISZ = \n -> n (\z -> FALSE) TRUE
let SKIP1 = \f p -> PAIR TRUE (ITE (FST p) (f (SND p)) (SND p))
let DEC = \n -> SND (n (SKIP1 INC) (PAIR FALSE ZERO))
let SUB = \n m -> m DEC n
let EQL = \n m -> AND (ISZ (SUB n m)) (ISZ (SUB m n))

12

Appendix II: Syntax and Semantics of Nano2

Expression syntax:

e ::= n | x | e1 + e2 | let x = e1 in e2 | \x -> e | e1 e2

Operational semantics:

e1 => e1'
[Add-L] ---------------------

e1 + e2 => e1' + e2

e2 => e2'
[Add-R] ---------------------

n1 + e2 => n1 + e2'

[Add] n1 + n2 => n where n == n1 + n2

e1 => e1'
[Let-Def] ---------------------------------------

let x = e1 in e2 => let x = e1' in e2

[Let] let x = v in e2 => e2[x := v]

e1 => e1'
[App-L] -----------------

e1 e2 => e1' e2

e => e'
[App-R] -------------

v e => v e'

[App] (\x -> e) v => e[x := v]

13

Syntax of types:

T ::= Int | T1 -> T2 | a
S ::= T | forall a . S

Typing rules:

[T-Num] G |- n :: Int

G |- e1 :: Int G |- e2 :: Int
[T-Add] -------------------------------

G |- e1 + e2 :: Int

[T-Var] G |- x :: S if x:S in G

G, x:T1 |- e :: T2
[T-Abs] ------------------------

G |- \x -> e :: T1 -> T2

G |- e1 :: T1 -> T2 G |- e2 :: T1
[T-App] -----------------------------------

G |- e1 e2 :: T2

G |- e1 :: S G, x:S |- e2 :: T
[T-Let] --------------------------------

G |- let x = e1 in e2 :: T

G |- e :: forall a . S
[T-Inst] ----------------------

G |- e :: [a / T] S

G |- e :: S
[T-Gen] ---------------------- if not (a in FTV(G))

G |- e :: forall a . S

Here n ∈ N is natural number, v ∈ Val is a value, x ∈ Var is a variable,
e ∈ Expr is an expression, a ∈ TVar is a type variable, T ∈ Type is a
type, S ∈ Poly is a type scheme (a poly-type), G ∈ Var → Poly is a type
environment (a context).

14

	Q1: Lambda Calculus [25 pts]
	Q2: Haskell: Files and Directories [35 pts]
	2.1 Tail-Recursive Size [15 pts]
	2.2 Remove [15 pts]
	2.3 Clean up [5 pts]

	Q3: Semantics and Type Systems [20 pts]
	3.1 Reduction 1 [5 points]
	3.2 Reduction 2 [5 points]
	3.3 Typing 1 [5 points]
	3.4 Typing 2 [5 points]

	Q4: Prolog: Regular expressions [30 pts]
	4.1 One of [10 points]
	4.2 Sequential Composition [10 points]
	4.3 Kleene Star [10 points]

	Appendix I: Lambda Calculus Cheat Sheet
	Appendix II: Syntax and Semantics of Nano2

