
CSE 130 Final, Fall 2019

Nadia Polikarpova

December 12, 2019

NAME ____________________________________

SID ____________________________________

• DO NOT TURN THIS PAGE OVER BEFORE WE TELL YOU TO

• You have 180 minutes to complete this exam.

• Where limits are given, write no more than the amount specified.

• You may refer to a double-sided cheat sheet, but no electronic
materials.

• Avoid seeing anyone else’s work or allowing yours to be seen.

• Do not communicate with anyone but an exam proctor.

• If you have a question, raise your hand.

• Good luck!

1

Q1: Lambda Calculus: Fibonacci [10 pts]

Your task is to implement the function FIB in lambda calculus, which computes
the n-th Fibonacci number. Recall that the Fibonacci numbers is a sequence of
natural numbers 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ... such that each
number (except the 0th and 1st) is the sum of the two preceding ones.

Your implementation should satisfy the following test cases:

eval fib0 : eval fib1 : eval fib2 : eval fib5 :
FIB ZERO FIB ONE FIB TWO FIB FIVE
=~> ZERO =~> ONE =~> ONE =~> FIVE

You can use any function defined in the “Lambda Calculus Cheat Sheet” at
the end of this exam.

Hint: There are two solution: one uses FIX, and the other one does not. We
encourage you to implement the latter, using an auxiliary function STEP that
takes as input a pair of numbers and returns a pair of numbers.

let STEP = ___

__

let FIB = __

2

Q2: Datatypes and Recursion [30 pts]

Consider a simplified version of Nano that only has numbers, addition, vari-
ables, and let-bindings. Expressions in this language can be represented using
the following Haskell datatype Expr:

type Id = String

data Expr
= Num Int -- numeral
| Var Id -- variable
| Add Expr Expr -- addition
| Let Id Expr Expr -- let-binding

You can use the following library functions in your solutions below:

• equality: (==) :: (Eq a) => a -> a -> Bool
• append two lists: (++) :: [a] -> [a] -> [a]
• check list membership: elem :: (Eq a) => a -> [a] -> Bool

3

2.1 Tail-Recursive Delete [10 pts]

Implement a function delete that deletes an identifier from a list of identi-
fiers. Your function must be tail-recursive and use the provided auxiliary
function loop.

Your implementation must satisfy the following test cases

delete "x" ["foo", "x", "y"]
==> ["foo", "y"]

delete "x" ["foo", "y"]
==> ["foo", "y"]

delete :: Id -> [Id] -> [Id]

delete x xs = loop __

where

loop :: [Id] -> [Id] -> [Id]

4

2.2 Free Variables [10 pts]

Using delete from 2.1, implement a function freeVars that computes the
set of free variables in a Nano expression. Reminder: a variable is free in e if
at least one of its occurrences is not bound by any enclosing let-binding.

freeVars :: Expr -> [Id]

5

2.3 Optimize [10 pts]

Using freeVars from 2.2, implement a function optimize that removes
unused let-bindings from a Nano expression. Your implementation must
satisfy the following test cases:

-- let y = 2 in 1 ==> 1
optimize (Let "y" (Num 2) (Num 1))

==> Num 1
-- let x = 1 in (let y = 2 in x) ==> let x = 1 in x
optimize (Let "x" (Num 1) (Let "y" (Num 2) (Var "x")))

==> Let "x" (Num 1) (Var "x")
-- let x = 1 in (let y = x in 3) ==> 3
optimize (Let "x" (Num 1) (Let "y" (Var "x") (Num 3)))

==> Num 3
-- let x = 1 in (let y = x in y) ==> itself
optimize (Let "x" (Num 1) (Let "y" (Var "x") (Var "y")))

==> (Let "x" (Num 1) (Let "y" (Var "x") (Var "y")))

optimize :: Expr -> Expr

6

Q3: Higher-Order Functions [30 pts]

Consider the following implementation of Bucket sort. The main function
sort sorts a list of integers xs by partitioning its elements into separate
lists (buckets), one per each integer between the minimum and the maximum
element of xs, and then concatenating the buckets together:

-- | Bucket sort
-- | sort [4, 1, 1, 2] ==> [1, 1, 2, 4]
sort :: [Int] -> [Int]
sort [] = []
sort xs = concat (bucket xs [minimum xs .. maximum xs])

-- | Minimum element of a non-empty list
-- | minimum [4, 1, 1, 2] ==> 1
minimum :: [Int] -> Int
minimum [x] = x
minimum (x:y:ys) = minimum (min x y : ys)

-- | Maximum element of a non-empty list
-- | maximum [4, 1, 1, 2] ==> 4
maximum :: [Int] -> Int -- similar to minimum

-- | bucket xs bs distributes elements from `xs` into `bs`:
-- | bucket [4, 1, 1, 2] [1, 2, 3, 4] ==> [[1, 1], [2], [], [4]]
bucket :: [Int] -> [Int] -> [[Int]]
bucket _ [] = []
bucket xs (b:bs) = pick b xs : bucket xs bs

where
pick b [] = []
pick b (y:ys) = if y == b then y:(pick b ys) else pick b ys

-- | Concatenate a list of lists
-- | concat [[1, 1], [2], [], [4]] ==> [1, 1, 2, 4]
concat :: [[Int]] -> [Int]
concat [] = []
concat (xs:xss) = xs ++ concat xss

7

Your task is to rewrite each recursive helper function of Bucket sort into a
function that always returns the same result but doesn’t directly use recursion.
Instead, your functions can use the following higher-order functions from the
standard library:

map :: (a -> b) -> [a] -> [b]
filter :: (a -> Bool) -> [a] -> [a]
foldr :: (a -> b -> b) -> b -> [a] -> b
foldl :: (b -> a -> b) -> b -> [a] -> b

Apart from these four functions, your implementation can only use the
library functions and syntactic sugar that the original implementation uses,
in particular:

• minimum between two integers: min :: Int -> Int -> Int
• append two lists: (++) :: [a] -> [a] -> [a]
• range syntax: [n .. m]

8

3.1 List minimum [10 pts]

-- | Minimum element of a non-empty list
-- | minimum [4, 1, 1, 2] ==> 1
minimum :: [Int] -> Int

3.2 Bucket [10 pts]

-- | bucket xs bs distributes elements from `xs` into `bs`:
-- | bucket [4, 1, 1, 2] [1, 2, 3, 4] ==> [[1, 1], [2], [], [4]]
bucket :: [Int] -> [Int] -> [[Int]]

3.3 Concatenation [10 pts]

-- | Concatenate a list of lists
-- | concat [[1, 1], [2], [], [4]] ==> [1, 1, 2, 4]
concat :: [[Int]] -> [Int]

9

Q4: Semantics and Type Systems [20 pts]

In this part, you will answer questions about the operational semantics and
the type system of Nano, both given in Appendix II at the end of the exam.
In each question, mark all the answers that apply; it is possible that none,
some, or all of the answers are correct.

4.1 Evaluation 1 [5 points]

Which of these evaluation relations are valid according to the operational
semantics of Nano?

(A) [] ; 1 + x ==> 1 []

(B) [] ; (\x -> 1) ==> 1 []

(C) [] ; (\x -> 1) (2 + 3) ==> 1 []

(D) [] ; (\x -> x x) (\x -> x x) ==> <[], x, x x> []

(E) [f := <[x:=5],y,x + y>] ; f 1 ==> 6 []

4.2 Evaluation 2 [5 points]

Which of the following rules are used in the derivation of the reduction

[] ; (\x y -> x + y) 5 ==> <[x:=5], y, x+y>

(A) E-Num []

(B) E-Var []

(C) E-Add []

(D) E-Lam []

(E) E-App []

10

4.3 Typing 1 [5 points]

Which of the following typing judgments are valid according to the type
system of Nano?

(A) [x:Int,y:Int] |- x :: Int []

(B) [x:Int] |- x + y :: Int []

(C) [] |- \x y -> x :: Int -> Int -> Int []

(D) [] |- \x y -> x :: Int -> (Int->Int) -> Int []

(E) [] |- \x y -> x :: Int -> Int -> Int -> Int []

4.4 Typing 2 [5 points]

Which of the following rules are used in the derivation of the typing judgment

[] |- (\x y -> x + y) 5 :: Int -> Int

(A) T-Num []

(B) T-Var []

(C) T-Add []

(D) T-Lam []

(E) T-App []

11

Appendix I: Lambda Calculus Cheat Sheet

-- Booleans --------------------------------

let TRUE = \x y -> x
let FALSE = \x y -> y
let ITE = \b x y -> b x y
let NOT = \b x y -> b y x
let AND = \b1 b2 -> ITE b1 b2 FALSE
let OR = \b1 b2 -> ITE b1 TRUE b2

-- Pairs -----------------------------------

let PAIR = \x y b -> b x y
let FST = \p -> p TRUE
let SND = \p -> p FALSE

-- Numbers ---------------------------------

let ZERO = \f x -> x
let ONE = \f x -> f x
let TWO = \f x -> f (f x)
let THREE = \f x -> f (f (f x))
let FOUR = \f x -> f (f (f (f x)))
let FIVE = \f x -> f (f (f (f (f x))))

-- Arithmetic ------------------------------

let INC = \n f x -> f (n f x)
let ADD = \n m -> n INC m
let MUL = \n m -> n (ADD m) ZERO
let ISZ = \n -> n (\z -> FALSE) TRUE
let SKIP1 = \f p -> PAIR TRUE (ITE (FST p) (f (SND p)) (SND p))
let DEC = \n -> SND (n (SKIP1 INC) (PAIR FALSE ZERO))
let SUB = \n m -> m DEC n
let EQL = \n m -> AND (ISZ (SUB n m)) (ISZ (SUB m n))

12

Appendix II: Syntax and Semantics of Nano

Expressions:

e ::= n -- numeral
| x -- variable
| e1 + e2 -- addition
| \x -> e -- abstraction
| e1 e2 -- application

Values:

v ::= n -- numeral
| <E, x, e> -- closure

Environments:

E ::= [] -- empty
| x := v, E -- value binding and rest

Evaluation Rules

[E-Num]-------------
E ; n ==> n

[E-Var]--------------------
(x:=v,E) ; x ==> v

E ; e1 ==> n1 E ; e2 ==> n2 n == n1 + n2
[E-Add]--

E ; (e1 + e2) ==> n

[E-Lam]---------------------------
E ; (\x -> e) ==> <E, x, e>

E ; e1 ==> <E', x, e> E ; e2 ==> v2 (x:=v2,E') ; e ==> v
[E-App]--

E ; (e1 e2) ==> v

13

Types:

T ::= Int -- integers
| T1 -> T2 -- function types

Contexts:

G ::= [] -- empty
| x:T, G -- type binding and rest

Typing Rules

[T-Num]-------------
G |- n :: Int

[T-Var]----------------
x:T, G |- x :: T

G |- e1 :: Int G |- e2 :: Int
[T-Add]-------------------------------

G |- e1 + e2 :: Int

x:T1, G |- e :: T2
[T-Lam]------------------------

G |- \x -> e :: T1 -> T2

G |- e1 :: T1 -> T2 G |- e2 :: T1
[T-App]----------------------------------

G |- e1 e2 :: T2

14

	Q1: Lambda Calculus: Fibonacci [10 pts]
	Q2: Datatypes and Recursion [30 pts]
	2.1 Tail-Recursive Delete [10 pts]
	2.2 Free Variables [10 pts]
	2.3 Optimize [10 pts]

	Q3: Higher-Order Functions [30 pts]
	3.1 List minimum [10 pts]
	3.2 Bucket [10 pts]
	3.3 Concatenation [10 pts]

	Q4: Semantics and Type Systems [20 pts]
	4.1 Evaluation 1 [5 points]
	4.2 Evaluation 2 [5 points]
	4.3 Typing 1 [5 points]
	4.4 Typing 2 [5 points]

	Appendix I: Lambda Calculus Cheat Sheet
	Appendix II: Syntax and Semantics of Nano

