
CSE 130 Final Solution, Fall 2019

Nadia Polikarpova

December 12, 2019

Q1: Lambda Calculus: Fibonacci [10 pts]

Solution without FIX:

let STEP = \p -> PAIR (SND p) (ADD (FST p) (SND p))

let FIB = \n -> FST (n STEP (PAIR ZERO ONE))

Solution with FIX:

let STEP = \rec n -> ITE (ISZ n) ZERO (ITE (EQL ONE n) ONE
(ADD (rec (DEC n)) (rec (DEC (DEC n)))))

let FIB = FIX STEP

1

Q2: Datatypes and Recursion [30 pts]

2.1 Tail-Recursive Delete [10 pts]

delete :: Id -> [Id] -> [Id]
delete x xs = loop [] xs

where
loop :: [Id] -> [Id] -> [Id]
loop acc [] = acc
loop acc (y:ys) = if x == y

then loop acc ys
else loop (y : acc) ys

2.2 Free Variables [10 pts]

freeVars :: Expr -> [Id]
freeVars (Num n) = []
freeVars (Var x) = [x]
freeVars (Add e1 e2) = freeVars e1 ++ freeVars e2
freeVars (Let x e1 e2) = freeVars e1 ++ (delete x (freeVars e2))

2.3 Optimize [10 pts]

optimize :: Expr -> Expr
optimize (Num n) = Num n
optimize (Var x) = Var x
optimize (Add e1 e2) = Add (optimize e1) (optimize e2)
optimize (Let x e1 e2) = let

e1' = optimize e1
e2' = optimize e2

in if x `elem` freeVars e2'
then Let x e1' e2'
else e2'

2

Q3: Higher-Order Functions [30 pts]

3.1 List minimum [10 pts]

-- | Minimum element of a non-empty list
-- | minimum [4, 1, 1, 2] ==> 1
minimum :: [Int] -> Int
minimum (x:xs) = foldr min x xs

3.2 Bucket [10 pts]

-- | bucket xs bs distributes elements from `xs` into `bs`:
-- | bucket [4, 1, 1, 2] [1, 2, 3, 4] ==> [[1, 1], [2], [], [4]]
bucket :: [Int] -> [Int] -> [[Int]]
bucket xs bs = map (\b -> filter (== b) xs) bs

3.3 Concatenation [10 pts]

-- | Concatenate a list of lists
-- | concat [[1, 1], [2], [], [4]] ==> [1, 1, 2, 4]
concat :: [[Int]] -> [Int]
concat xss = foldr (++) [] xss

3

Q4: Semantics and Type Systems [20 pts]

4.1 Evaluation 1 [5 points]

Which of these evaluation relations are valid according to the operational
semantics of Nano?

(A) [] ; 1 + x ==> 1 []

(B) [] ; (\x -> 1) ==> 1 []

(C) [] ; (\x -> 1) (2 + 3) ==> 1 [X]

(D) [] ; (\x -> x x) (\x -> x x) ==> <[], x, x x> []

(E) [f := <[x:=5],y,x + y>] ; f 1 ==> 6 [X]

4.2 Evaluation 2 [5 points]

Which of the following rules are used in the derivation of the reduction

[] ; (\x y -> x + y) 5 ==> <[x:=5], y, x+y>

(A) E-Num [X]

(B) E-Var []

(C) E-Add []

(D) E-Lam [X]

(E) E-App [X]

4

4.3 Typing 1 [5 points]

Which of the following typing judgments are valid according to the type
system of Nano?

(A) [x:Int,y:Int] |- x :: Int [X]

(B) [x:Int] |- x + y :: Int []

(C) [] |- \x y -> x :: Int -> Int -> Int [X]

(D) [] |- \x y -> x :: Int -> (Int->Int) -> Int [X]

(E) [] |- \x y -> x :: Int -> Int -> Int -> Int []

4.4 Typing 2 [5 points]

Which of the following rules are used in the derivation of the typing judgment

[] |- (\x y -> x + y) 5 :: Int -> Int

(A) T-Num [X]

(B) T-Var [X]

(C) T-Add [X]

(D) T-Lam [X]

(E) T-App [X]

5

	Q1: Lambda Calculus: Fibonacci [10 pts]
	Q2: Datatypes and Recursion [30 pts]
	2.1 Tail-Recursive Delete [10 pts]
	2.2 Free Variables [10 pts]
	2.3 Optimize [10 pts]

	Q3: Higher-Order Functions [30 pts]
	3.1 List minimum [10 pts]
	3.2 Bucket [10 pts]
	3.3 Concatenation [10 pts]

	Q4: Semantics and Type Systems [20 pts]
	4.1 Evaluation 1 [5 points]
	4.2 Evaluation 2 [5 points]
	4.3 Typing 1 [5 points]
	4.4 Typing 2 [5 points]

