
Resource-Guided
Program Synthesis

Tristan Knoth1, Di Wang2, Nadia Polikarpova1, Jan Hoffmann2

1UC San Diego
2Carnegie Mellon University

PLDI 2019

1

Program Synthesis

Synthesizer

Declarative specification

Executable program

2

State of the art

Synthesizer

“Find the intersection
of two sorted lists”

3

Type-directed synthesis

Synthesizer

4

common = λ xs. λ ys.
match xs with

Nil → Nil
Cons x xt →
if !(member x ys)

then common xt ys
else Cons x (common xt ys)

common :: xs: SList a → ys: SList a
→ ν: {List a | elems ν = elems xs ∩ elems ys}

common = λ xs. λ ys.
match xs with

Nil → Nil
Cons x xt →

if !(member x ys)
then common xt ys
else Cons x (common xt ys)

xs x

ys x

5

common = λ xs. λ ys.
match xs with

Nil → Nil
Cons x xt →

if !(member x ys)
then common xt ys
else Cons x (common xt ys)

xs x

ys x

6

7

common = λ xs. λ ys.
match xs with
Nil → Nil
Cons x xt →
match ys with
Nil → Nil
Cons y yt →
if x < y
then common xt ys
else if y < x
then common xs yt
else Cons x (common xs ys)

8

common = λ xs. λ ys.
match xs with
Nil → Nil
Cons x xt →
match ys with
Nil → Nil
Cons y yt →
if x < y
then common xt ys
else if y < x
then common xs yt
else Cons x (common xs ys)

9

common = λ xs. λ ys.
match xs with
Nil → Nil
Cons x xt →

match ys with
Nil → Nil
Cons y yt →
if x < y

then common xt ys
else if y < x

then common xs yt
else Cons x (common xs ys)

common = λ xs. λ ys.
match xs with

Nil → Nil
Cons x xt →

if !(member x ys)
then common xt ys
else Cons x (common xt ys)

O(m∙n) O(m + n)

What we have

Synthesizer

“Find the intersection
of two sorted lists”

10

O(m∙n)

What we want

Synthesizer

“Find the intersection of two
sorted lists in linear time”

O(m+n)

ReSyn
The first resource-aware

synthesizer for recursive programs

11

12

“Find the intersection of two
sorted lists in linear time”

This talk

Synthesizer

1. Specification

13

“Find the intersection of two
sorted lists in linear time”

This talk

Synthesizer

1. Specification

14

“Find the intersection of two
sorted lists in linear time”

This talk

1. Specification
Synthesizer

SearchAnalysis

15

“Find the intersection of two
sorted lists in linear time”

This talk

1. Specification

2. Analysis
SearchAnalysis

Synthesizer

16

“Find the intersection of two
sorted lists in linear time”

This talk

1. Specification

2. Analysis

3. Search
SearchAnalysis

Synthesizer

This talk

1. Specification

2. Analysis

3. Search

18

Synthesizer

“Find the intersection of two
sorted lists in linear time”

??

19

Synthesizer

“Find the intersection of two
sorted lists in linear time”

??

Refinement types

20

Synthesizer

“Find the intersection of two
sorted lists in linear time”

Refinement types
with

Resource annotations

??

21

Resource-guided Program
Synthesis

Type-directed
Program Synthesis

[Polikarpova et. al 2016]

Refinements:
Synquid

22

Resource-guided Program
Synthesis

Type-directed
Program Synthesis

Resource annotations:
Automated Amortized

Resource Analysis

[Polikarpova et. al 2016] [Hoffmann et al. 2010]

Refinements:
Synquid

{B|Ψ}
23

“Find the intersection of two
sorted lists in linear time”

ν:{Int|ν≥0}

24

Refinement types

common = ??

25

Refinement types

common :: xs: SList a → ys: SList a
→ ν: {List a | elems ν = elems xs ∩ elems ys}

common = ??

26

Refinement types

common :: xs: SList a → ys: SList a
→ ν: {List a | elems ν = elems xs ∩ elems ys}

common = ??

27

Refinement types

common :: xs: SList a → ys: SList a
→ ν: {List a | elems ν = elems xs ∩ elems ys}

common = ??

28

Synquid

29

[Polikarpova et. al, 2016]

Functional
specification

Library
functions

Synquid

common = λ xs. λ ys.
match xs with
Nil → Nil
Cons x xt →
if !(member x ys)

then common xt ys
else Cons x (common xt ys)

30

[Polikarpova et. al, 2016]

Library
functions

Functional
specification

{B|Ψ}

31

“Find the intersection of two
sorted lists in linear time”

{B|Ψ}
φ

32

“Find the intersection of two
sorted lists in linear time”

Potential

{B|Ψ}
φ

Refinement: boolean

Potential: numeric

33

“Find the intersection of two
sorted lists in linear time”

Resource annotations

common :: xs: SList a → ys: SList a
→ ν: {List a | elems ν = elems xs ∩ elems ys}

common = ??

34

Resource budget

common :: xs: SList a1 → ys: SList a1

→ ν: {List a | elems ν = elems xs ∩ elems ys}
common = ??

35

Synthesize with ReSyn

common :: xs: SList a1 → ys: SList a1

→ ν: {List a | elems ν = elems xs ∩ elems ys}
common = ??

36

member
Cons, Nil, …
≤, =, !, …

Components: member

37

member :: z:a → zs: List a
→ ν:{Bool|ν = (x ∈ elems xs)}

Components: member

38

member :: z:a → zs: List a1

→ ν:{Bool|ν = (x ∈ elems xs)}

Components: member

39

member :: z:a → zs: List a1

→ ν:{Bool|ν = (x ∈ elems xs)}

ReSyn

40

Library
functions

Resource bound

Functional
specification

ReSyn

common = λ xs. λ ys.
match xs with
Nil → Nil
Cons x xt →
match ys with

Nil → Nil
Cons y yt →
if x < y

then common xt ys
else if y < x
then common xs yt
else Cons x (common xs ys)

41

Library
functions

Resource bound

Functional
specification

This talk

1. Specification

2. Analysis

3. Search

43

common = λ xs. λ ys.
match xs with

Nil → Nil
Cons x xt →
if !(member x ys)
then common xt ys
else Cons x (common xt ys)

How do we know common does not run in linear time?

common = λ xs. λ ys.
match xs with

Nil → Nil
Cons x xt →
if !(member x ys)

then common xt ys
else Cons x (common x ys)

xs x

ys x

44

member :: z:a → zs: List a1

→ ν:{Bool|ν = (x ∈ elems xs)}

45

How do we automate this reasoning?

common = λ xs. λ ys.
match xs with

Nil → Nil
Cons x xt →
if !(member x ys)
then common xt ys
else Cons x (common xt ys)

46

common :: xs: SList a1 → ys: SList a1 → ν: {List a |…}
common = λ xs. λ ys.
match xs with

Nil → Nil
Cons x xt →
if !(member x ys)
then common xt ys
else Cons x (common xt ys)

47

ys :: SList a1

Can we partition the allotted resources
between all function calls?

common = λ xs. λ ys.
match xs with

Nil → Nil
Cons x xt →
if !(member x ys)
then common xt ys
else Cons x (common xt ys)

48

common = λ xs. λ ys.
match xs with

Nil → Nil
Cons x xt →
if !(member x ys)
then common xt ys
else Cons x (common xt ys)

49

common = λ xs. λ ys.
match xs with

Nil → Nil
Cons x xt →
if !(member x (ys :: List ap))
then common xt (ys :: List aq)
else Cons x (common xt ys)

50

common = λ xs. λ ys.
match xs with

Nil → Nil
Cons x xt →
if !(member x (ys :: List ap))
then common xt ys
else Cons x (common xt ys)

51

common = λ xs. λ ys.
match xs with

Nil → Nil
Cons x xt →
if !(member x (ys :: List ap))
then common xt ys
else Cons x (common xt ys)

member :: z:a → zs: List a1 → ν:{Bool|…}

52

common = λ xs. λ ys.
match xs with

Nil → Nil
Cons x xt →
if !(member x (ys :: List ap))
then common xt ys
else Cons x (common xt ys)

List ap <: List a1

member :: z:a → zs: List a1 → ν:{Bool|…}

53

List ap <: List bq

a <: b p ≥ q

ap <: bq

54

common = λ xs. λ ys.
match xs with

Nil → Nil
Cons x xt →
if !(member x (ys :: List ap))
then common xt ys
else Cons x (common xt ys)

List ap <: List a1

p ≥ 1

member :: z:a → zs: List a1 → ν:{Bool|…}

55

common = λ xs. λ ys.
match xs with

Nil → Nil
Cons x xt →
if !(member x ys)
then common xt (ys :: List aq)
else Cons x (common xt ys)

common :: xs: SList a1 → ys: SList a1 → ν: {List a |…}

56

common = λ xs. λ ys.
match xs with

Nil → Nil
Cons x xt →
if !(member x ys)
then common xt (ys :: List aq)
else Cons x (common xt ys)

List aq <: List a1

q ≥ 1

common :: xs: SList a1 → ys: SList a1 → ν: {List a |…}

57

common = λ xs. λ ys.
match xs with

Nil → Nil
Cons x xt →
if !(member x ys)
then common xt ys
else Cons x (common xt ys)

SList a1 SList ap, SList aqSharing

58

common = λ xs. λ ys.
match xs with

Nil → Nil
Cons x xt →
if !(member x ys)
then common xt ys
else Cons x (common xt ys)

SList a1 SList ap, SList aq

1 = p + q

Sharing

59

common = λ xs. λ ys.
match xs with

Nil → Nil
Cons x xt →
if !(member x ys)
then common xt ys
else Cons x (common xt ys)

SList a1 SList ap, SList aq

1 = p + q
p ≥ 1
q ≥ 1

Sharing

Subtyping

1 = p + q &&
p ≥ 1 &&
q ≥ 1

SMT

60

1 = p + q &&
p ≥ 1 &&
q ≥ 1

SMT

61

This talk

1. Specification

2. Analysis

3. Search

63

Enumerate-and-check

Synthesizer
Whole-program

Resource
Analysis

64

Enumerate-and-check

Synthesizer

Whole-
program
Resource
Analysis

Resource-Guided Synthesis

Synthesis

Local Resource Analysis

Reject impossible programs early

common = λ xs. λ ys.
match xs with

Nil → Nil
Cons x xt →

if !(member x ys)
then common xt ys
else ??

65

Reject impossible programs early with local analysis

common = λ xs. λ ys.
match xs with

Nil → Nil
Cons x xt →

if !(member x ys)
then common xt ys
else ??

66

common = λ xs. λ ys.
match xs with

Nil → Nil
Cons x xt →

if !(member x ys)
then common xt ys
else ??

67

Reject impossible programs early with local analysis

common = λ xs. λ ys.
match xs with

Nil → Nil
Cons x xt →

if !(member x ys)
then common ys ??
else ??

68

Reject impossible programs early with local analysis

Evaluation

69

Evaluation

70

1. Can ReSyn generate faster programs than Synquid?

Evaluation

71

1. Can ReSyn generate faster programs than Synquid?

2. How much longer does ReSyn take to generate code?

Evaluation

72

1. Can ReSyn generate faster programs than Synquid?

2. How much longer does ReSyn take to generate code?

3. Is local resource analysis effective at guiding the search?

1. Can ReSyn generate faster programs?

73

1. Can ReSyn generate faster programs?

74

65

54

Generated by Synquid

Generated by ReSyn

Require super-linear bound

54

1. Can ReSyn generate faster programs?

75

65 Generated by Synquid

Improved by ReSyn

Require super-linear bound

2

Generated by ReSyn

1. Can ReSyn generate faster programs?

76

59

9

Generated by ReSyn

Improved by ReSyn

77

compress xs =
match xs with

Nil → Nil
Cons x3 x4 →

match compress x4 with
Nil → Cons x3 Nil
Cons x10 x11 →
if x3 == x10

then compress x4
else Cons x3 (Cons x10 x11)

compress xs =
match xs with

Nil → Nil
Cons x3 x4 →

match compress x4 with
Nil → Cons x3 Nil
Cons x10 x11 →
if x3 == x10

then Cons x10 x11
else Cons x3 (Cons x10 x11)

O(2n) O(n)

Synquid ReSyn

compress: Remove adjacent duplicates

78

insert x xs =
match xs with

Nil → Cons x Nil
Cons y ys →

if x < y
then Cons x (insert y ys)
else Cons y (insert x ys)

insert x xs =
match xs with

Nil → Cons x Nil
Cons y ys →

if x < y
then Cons x (Cons y ys)
else Cons y (insert x ys)

O(n) O(n)

Synquid ReSyn

insert: Insert into a sorted list

79

insert x xs =
match xs with

Nil → Cons x Nil
Cons y ys →

if x < y
then Cons x (insert y ys)
else Cons y (insert x ys)

insert x xs =
match xs with

Nil → Cons x Nil
Cons y ys →

if x < y
then Cons x (Cons y ys)
else Cons y (insert x ys)

“One recursive call per element in
xs that is smaller than x”

O(n) O(n)

insert :: x:a → xs: SList aif x > ν then 1 else 0

→ ν:{SList a | elems ν = elems xs ∪ {x}}

2. How do synthesis times compare?

80

0

20

40

60

80

100

120

140

160

180

200

List Tree BST Binary
Heap

RBT AVL User

Sy
n

th
es

is
 T

im
e

(s
)

ReSyn

Synquid

2. How do synthesis times compare?

81

0

20

40

60

80

100

120

140

160

180

200

List Tree BST Binary
Heap

RBT AVL User

Sy
n

th
es

is
 T

im
e

(s
)

ReSyn

Synquid

Median: 2.5x slower

2. How do synthesis times compare?

82

0

20

40

60

80

100

120

140

160

180

200

List Tree BST Binary
Heap

RBT AVL User

Sy
n

th
es

is
 T

im
e

(s
)

ReSyn

Synquid

ReSyn finds faster
implementation

2. How do synthesis times compare?

83

0

20

40

60

80

100

120

140

160

180

200

List Tree BST Binary
Heap

RBT AVL User

Sy
n

th
es

is
 T

im
e

(s
)

ReSyn

Synquid

Dependent bounds

3. Does local resource analysis guide synthesis?

84

3. What happens if the analysis is non-local?

85

3. What happens if the analysis is non-local?

9 6 Timeout > 600s

ReSyn

Enumerate-and-check

86

3. What happens if the analysis is non-local?

9 6 Timeout > 600s

common = λ xs. λ ys.
match xs with

Nil → Nil
Cons x xt →
if !(member x ys)

then common xt ys
else Cons x (common x ys)

common = λ xs. λ ys.
match xs with
Nil → Nil
Cons x xt →
match ys with

Nil → Nil
Cons y yt →
if x < y

then common xt ys
else if y < x

then common xs yt
else Cons x (common xs ys)

87

What we had

Synthesizer

“Find the intersection
of two sorted lists”

88

O(m∙n)

What we have now

Synthesizer

“Find the intersection of two
sorted lists in linear time”

O(m+n)

https://bitbucket.org/tjknoth/resyn

89

