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ABSTRACT We introduce two completely parallel algorithms for exactly solving the distributed multiple
order statistic problem. The main algorithm, Distributed Iterative Bucket MultiSelect or DIBMS, keeps
communication costs proportional to the number of order statistics with minimal communication of actual
data. Moreover, the work done at the remote nodes is fully parallelized on graphics processing units.
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I. INTRODUCTION
The selection problem is a data aggregation task that is
ubiquitous and well studied. Suppose you have a numerical
data set of ten million values and wish to know the value
which establishes the top 10%; you want to select the nine
millionth largest value in your data set. This is selection, or
k-selection with k = 9, 000, 000, and the kth value is also
known as the kth order statistic [1]–[4].

Common selection tasks include finding the minimum,
median, and maximum. Finding the median differs from the
other two tasks as it cannot be accomplished with a single
pass through the data. The median has the special property
that half of the data set will be larger and half smaller, so
evaluating a candidate for the median requires us to count
exactly how many elements of our data set are larger than
the candidate and how many are smaller. The same is true for
finding the kth largest value for some other k, like the tenth
percentile rather than the fiftieth percentile. This requires us
to know something about every value in the data set. Such an
aggregation problem is more complicated than, say, taking
a sum or computing an average. The selection problem is a
non-decomposable aggregation problem [5].

Now suppose further that you want even more: rather than
just one order statistic like the tenth percentile, you want to
know all the percentiles. A simple linear interpolation of
the percentiles provides a highly accurate approximation of
the density function for your data allowing you to rapidly
query this function rather than the data. This more compli-

cated task of selecting multiple order statistics is known as
multiselection [6]–[8].

When data sets are small enough, sorting is the best
way to accomplish multiselection. Modern data sets are,
however, enormous. In edition to being very large, modern
data sets are often stored at multiple locations. The dis-
tributed selection problem has also been studied for nearly
50 years with an emphasis on minimizing communication
[9]–[15]. The sizes of modern data sets at the distributed
locations now demand distributed multiselection algorithms
that both minimize communication and complete their tasks
very quickly at the nodes.

In this paper we consider the multiselection problem for
data distributed on a system of computers equipped with
graphics processing units. The algorithm is designed to keep
required communication costs proportional to the number of
requested order statistics. Moreover, at the remote locations,
the algorithm’s tasks are completed in mere milliseconds.
The combination of limited communication and rapid GPU
execution at the nodes are the hallmarks our algorithm, DIS-
TRIBUTEDITERATIVEBUCKETMULTISELECT or DIBMS.
DIBMS can select the percentile order statistics from a data
set of 268 million values distributed at four locations in
roughly one tenth of a second (see Table 4).

A. Selection and Order Statistics
To understand the contributions of DIBMS, we consider
simpler selection problems, building to distributed multise-
lection. We begin in this subsection by defining the problem
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of finding a single order statistic, known as k selection or
simply selection. In the next subsection we will establish
the language for the remainder of the paper. The final two
subsections extend the selection problem to the task of
selecting multiple order statistics simultaneously and then
doing so when the data is distributed to multiple locations.

The general scheme for k selection is to iteratively sep-
arate the data into subcollections [1], one made up of can-
didates for the kth order statistic and the other of elements
eliminated from contention. Suppose our data S contains n
numeric values, possibly with repeated values, and suppose
we need to find the kth largest value in S. Given a pivot
value p, we partition S into two collections: one containing
those values less than or equal to p, and the other values
greater than p:

L = {x ∈ S : x ≤ p}, G = {x ∈ S : x > p}.

Now, we count the size of the collections (|L|, |G|) and
determine which subcollection contains the kth largest value.
If L has more than k elements, then we perform this task
again on L with a new pivot value. Otherwise, G contains
our kth largest value and we iterate on G while updating k
to the value k − |L|.

In each iteration, our goal is to eliminate from contention
as many elements from the data as possible. This makes the
selection of the pivots at each iteration very important and
the focus of much study. Hoare’s FIND [1], now referred to
as QUICKSELECT, chooses the pivot randomly from S. The
median-of-medians idea from Blum et al. [3] separates S
into smaller collections of data, computes medians on these
smaller data sets, and then chooses the pivot, p, as the median
among these subcollection medians. When resources are
available, defining many more subcollections can accelerate
selection [4], [16].

B. Language and Notation
The variety of fields and applications for which this problem
is important has created a wide range of language for the
problem. We shall adopt a specific, descriptive language for
the rest of this paper outlining the key ideas in selection.
The data set S will always contain n elements, and, like
most real world data, is allowed to contain duplicates. We
call the kth largest value the kth order statistic and any set
of m desired values the order statistics. The general scheme
described above in Section A will be referred to via four
subroutines. The subcollections of S in which we partition
the data will be called buckets, and our task will be to create
buckets, assign every element in S to a bucket, determine
which bucket contains the order statistic(s) we seek, and
reduce the problem to only the important bucket(s).

Create Buckets
Determine the pivots which define the buckets.

Assign Buckets
For each element in our current data, determine

which bucket it should be assigned based on our
bucket definitions.

Identify Active Buckets
By counting the number of elements assigned to
each bucket (including counting duplicates), de-
termine which bucket (buckets) contains the order
statistic (order statistics) we seek.

Reduce
Eliminate all elements not assigned to an active
bucket, update any order statistics based on this
new, reduced data, and proceed with only those
elements in the active buckets and the updated
order statistics.

For example, in QUICKSELECT with an equality bucket, we
randomly select p and Create Buckets L,E,G:

L = {x ∈ S : x < p},
E = {x ∈ S : x = p},
G = {x ∈ S : x > p}.

We then Assign Buckets by comparing each x ∈ S to bucket
definitions; if S contains duplicates, some buckets must
contain duplicates. We Identify Active Buckets by computing
the counts |L|, |E|, |G|. If k < |L|, L is the only active
bucket. If |L| < k ≤ |L| + |E|, E is the active bucket.
Otherwise k > |L| + |E| and G is active. We Reduce by
keeping only the active bucket. If L is active, we do not
need to alter the order statistic k since we are still looking
for the kth order statistic on this smaller set L. If E is active,
we are in a special situation and can terminate our search
as the kth order statistics must be p. In the case that G is
active, we are now looking for the k − (|L| + |E|) largest
value among only the elements in G.

After Reduce, we have a new, smaller problem, and we
can solve that problem any way we would like. For example,
we could switch algorithms to solve the reduced problem,
or, as in the case of QUICKSELECT, we could simply iterate
on the reduced problem.

C. Selecting Multiple Order Statistics
The main algorithmic consideration for multiselection is
defining the buckets so that the Reduce subroutine makes a
considerable impact on the proportion of our data set S that
remains in contention to be order statistics. When we seek
m order statistics, and we Assign Buckets to B buckets, we
should end up with at most m Active Buckets. This implies
that we will eliminate the elements of the B − m buckets
that do not contain one of the targeted order statistics. We
want each of these B−m buckets of eliminated elements to
contain a substantial portion of the elements from the data.
The simplest idea is to attempt to design the buckets so
that each bucket will contain approximately n/B elements.
Seeking m order statistics from the data S, we will Identify
at most m Active Buckets and can reduce the problem from
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the n elements of S to an expected total of m
B n elements in

our active buckets.
In our continuing example of wanting the m = 101

order statistics defining the percentiles in a data set of
10 million values, creating B = 213 buckets allows our
first iteration to reduce the problem from ten million active
elements to roughly 125,000 active elements. A second,
equally successful iteration should further reduce to less than
two thousand candidates. In fact, assuming even partitioning
into buckets, the process will take

⌈
log B

m
(n)
⌉

iterations. In
our example with m = 101, B = 8192, and n = 107, the
expected number of iterations is 4.

D. Distributed Selection
We now consider a more complicated setting, where data
is stored at multiple locations. If communication costs,
memory, and data security were irrelevant, we could simply
gather the data together at a single location and select order
statistics. For most real applications, this is either unwise
or expensive, and we want to complete the order statistic
selection task without consolidating the data; in fact we want
to move as little data as possible.

The distributed selection problem has a long history with
early work studying the communication complexity of this
problem, e.g. [9]–[11]. Frederickson went on to analyze this
problem for various network topologies [12]. Santoro and
Suen [13] described reduction techniques in the form of
four phases to which our four subroutines roughly align.
The overwhelming majority of algorithms for selection, and
in particular for distributed selection, follow this general
outline. Santoro, Sidney, and Sidney [14] produced an al-
gorithm using this framework with a very low expected
communication cost.

The evolution of data and hardware keep this problem
relevant. Kuhn and collaborators revisited the distributed
selection problem in [15] by getting more pivots to create
more buckets. In our algorithm, we cap the number of
buckets only by the minimum shared memory capacity of
the local GPUs, allowing it to scale with hardware advances.
Differing from the early research model of ignoring local
computation, our algorithm DIBMS exploits the massive
parallelization of GPUs to accelerate the local computation
on large data sets.

E. Multiselection with GPUs
GPUs enable massively parallel sorting routines [17]–[21].
By sorting our collection S we learn every order statis-
tic, since an element’s rank corresponds to its position
in the sorted list. We hereafter refer to this algorithm as
SORT&CHOOSE. Even with the incredible performance of
GPU sorting, SORT&CHOOSE can be highly wasteful when
data sets are large enough.

In 2011, four initial k-selection algorithms were devel-
oped for GPUs: a probabilistic randomized pivot selection
RANDOMIZEDSELECT [22], an optimization based parti-

S distributed data set
n size (total number of elements) of data set
m number of order statistics
q number of nodes (including host node 0)
nj size of data on node j ∈ {0, . . . , q − 1}
B total number of buckets used in algorithms
P number of pivot intervals
bi number of buckets given to pivot interval i ∈ {0, . . . , P − 1}

TABLE 1. Reference list of variables.

tioning CUTTINGPLANE [23], a radix selection algorithm
RADIXSELECT [16], and a computational projection based
partitioning BUCKETSELECT [16]. For data with more than
roughly 100,000 elements, these were all shown to be clearly
superior to GPU sorting and highly competitive with each
other. More recently, a new uniform sampling strategy was
used in SAMPLESELECT [8], which exploited advances in
GPU architecture between 2011 and 2020.

When we want m distinct order statistics that are not
contiguous, it is best to employ specialized multiselection
algorithms. While most selection algorithms have extensions
to the multiselection problem, we focus1 on a specific GPU
multiselection extension of BUCKETSELECT which employs
our familiar four subroutines of Create Buckets, Assign
Buckets, Identify Active Buckets, and Reduce.

This extension, BUCKETMULTISELECT [7], has three
substantial modifications. To facilitate dimension reduction
in Assign Buckets, BUCKETMULTISELECT uses a sampling
strategy to form a uniform kernel density estimator for
defining the buckets; this density estimator helps balance
the number of elements assigned to each bucket. Shared
memory is exploited to accelerate performance, particularly
to avoid atomic conflicts when counting and accessing data.
Finally, after the Reduce phase, the newly reduced problem
is solved by sorting. In the next section, we introduce a
distributed version of BUCKETMULTISELECT. To avoid the
communication requirements of sorting, we then extend the
algorithm to an iterative version whose communication costs
are proportional to the number of order statistics.

II. DISTRIBUTED MULTISELECTION
In the distributed setting, naı́vely executing SORT&CHOOSE
by moving all the data to a centralized location and sorting
requires a prohibitive level of communication. While it is
surely possible to move all the data to a central location,
this paper and the algorithms to follow clearly demonstrate
that there is no need and no advantage to consolidating the
data. Our algorithm, DIBMS will allow us to find sets of
order statistics while leaving nearly all of the data on the
remote nodes.

1The probabilistically chosen pivots in RANDOMIZEDSELECT and the
dynamic recursion in SAMPLESELECT pose complications for the distributed
multiselection problem.
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In the following we introduce our algorithm in two parts.
First, we describe a preliminary phase using the principles
of BUCKETMULTISELECT to significantly reduce the size
of data in contention to be the order statistics. Second, we
discuss two solutions to this reduced, yet still distributed
problem. One solution, described in Section A, will be to
consolidate to the host for sorting only the data still in con-
tention; we call this algorithm DISTRIBUTEDBUCKETMUL-
TISELECT since it is performs the same sequence of tasks as
BUCKETMULTISELECT, albeit on distributed data. Section B
describes our second proposed solution, DISTRIBUTEDIT-
ERATIVEBUCKETMULTISELECT, which iterates on only the
data still in contention and avoids consolidation of data.

Performing some of the work in parallel on the distributed
data prior to transmitting will be helpful. For illustrative
and comparison purposes, we introduce a more sophisti-
cated version of a distributed SORT&CHOOSE. With data
distributed on several nodes, we first sort the local data on
each node. Then, following a tree structure, merge the sorted
lists between pairs of nodes until a fully sorted list is formed
on the host. From this list, all order statistics are known, but
the communication requirements for moving all of the data
are severe (as shown in Section IV).

Throughout this section we consider systems of q ma-
chines, called nodes, equipped with both a CPU and GPU.
One node will be identified as the host and coordinate all
the tasks of the other q−1 machines. In our model, the host
will also have its own share of data and perform the tasks
being performed at the remote nodes. We label the nodes
with the indices 0, 1, . . . , q − 1 with the host always being
node 0.

We assume the distributed system has a network topology
that enables the host to communicate with each of the nodes.
For simplicity, assume throughout that we are working with
a mesh topology or star topology, though the algorithms
can be adapted to other network topologies. Furthermore,
the GPU kernels are launched with the number of blocks,
numBlocks, equal to the number of multiprocessors on
the GPU. This enables the algorithm to launch subsequent
kernels to work an identical portion of the local data.

We study exactly finding a set of m order statistics from a
distributed data set S with a total size of n elements. These
n elements are distributed on q nodes each with nj elements
of the data set so that

∑q−1
n=0 nj = n, where node 0 is the

host machine controlling the algorithm. Our distributed algo-
rithms based on BUCKETMULTISELECT use a computational
process to assign elements of S to B buckets. The B buckets
are determined from P pivot intervals. Each pivot interval is
assigned a portion of the total buckets so that interval i has
bi buckets and

∑P−1
i=0 bi = B.

A. Distributed Bucket Multiselect
A distributed extension of BUCKETMULTISELECT is to run
the parallelized portions of the first phase of BUCKETMUL-
TISELECT at each node, communicate the status of the local

bucket assignments from the nodes to the host, identify
the active buckets, and ask the nodes to send only the
elements of the active buckets back to the host. With an
expected reduction from n elements in S to m

B · n elements
in the active buckets, we will have a substantial reduction in
communication cost.

The aggregation of even the reduced set of data is still
undesirable when the data sets are large. Even so, we first
present DISTRIBUTEDBUCKETMULTISELECT for two rea-
sons. First, in some situations, for example when the number
of order statistics is small and the security of transmitting a
portion of the data is ensured, DISTRIBUTEDBUCKETMUL-
TISELECT could be useful and relatively fast. Second, the
algorithm consists of a first phase where the distributed data
is reduced followed by a second phase where the reduced
data is consolidated and sorted. The first phase will be useful
again later.

We describe this algorithm in the following subsections,
each associated to the four subroutines of Create Buckets,
Assign Buckets, Identify Active Buckets, and Reduce. For
each subroutine, we will track the expected number of
communications where a communication is defined to be
sending a unit of information between a node and the host.
To aid in tracking the variables, the Supplementary Material
provides a table of the variable names, data type, location,
and a description [24, Table S2].

1) Phase 1: Create Buckets
In this first phase, we sample the data set to create reliable
kernel density estimator (KDE) intervals. Since sampling
theory provides reasonable confidence with 1024 samples,
we ask each of our q nodes to send its share of

⌈
1024 · ni

n

⌉
samples to the host. Furthermore, the KDE in our setting
needs the minimum and maximum values of S, so each node
also transmits the local minimum and maximum to the host.
Sampling the full data set to produce our initial KDE requires

2 · (q − 1) + 1024 ·
(
1− n0

n

)
(1)

communications to send the locals samples and local extreme
values to node 0 acting as host.

The remaining work to create the buckets is completed on
the CPU on the host. The global minimum and maximum
values are easy to find from the respective lists of local
extreme values from the nodes. We then find P − 1 order
statistics from the consolidated random sample following
the order statistic selection as in [7, Section 2.1]. Our
initialization determines increasing pivots defining 16 pivot
intervals, with P = 16 chosen from a combination of
empirical investigation and sampling theory. The uniform
sampling of 1024 elements gives roughly 95% confidence
that each interval will contain roughly n/16 elements of S
[25], [7, Section 2.5.3]. Therefore, we allot an equal number
of buckets to each of the pivot intervals which define a kernel
density estimator.
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Let the vector of length 17 named pivots represent our
ordered set of sampled approximate order statistics, with the
min and max in the first and last position. We can define
the following control parameters to completely create our B
buckets.

for i = 0, . . . , 15

leftPivots[i] = pivots[i]

rightPivots[i] = pivots[i+ 1]

bi = B/16

slopes[i] =
bi

(rightPivots[i]− leftPivots[i])
(2)

At this point, the host must send the three vectors defining
the buckets, namely leftPivots, rightPivots, and
slopes to each node for

3 · P · (q − 1) = 48 · (q − 1) (3)

communications. Since
(
1− ni

n

)
< 1 and P = 16 in this

phase, (1) and (3) show that all q nodes have the bucket
definitions after at most

c1,1 = 50(q − 1) + 1024 (4)

communications.

2) Phase 1: Assign Buckets
The data set S is distributed among the q nodes, but each
node now has the definitions of the B buckets. It is time
to assign every element in S a bucket and count how many
elements of S are assigned to each bucket. Fortunately, this
can be done in a fully distributed, fully parallelized fashion.

Fix any r ∈ {0, . . . , q − 1} so that we can consider the
work on the nr elements of the data S which live on node r.
Let’s call this local portion of the data vec. Now, also fix ` ∈
{0, . . . , nr − 1} and consider the local element v = vec[`].
Using a binary search of the sorted list leftPivots, we
determine that v is at least as large as leftPivots[j] and
smaller than leftPivots[j + 1] so that v must fall in
the pivot interval [leftPivots[j],rightPivots[j]]. We
know for certain that v will not be assigned to any of the
buckets allotted to the previous pivot intervals so we compute

preCount[j] =
j−1∑
i=0

bi.

In this first phase using the approximate KDE, we allotted
B/16 buckets to each pivot interval, so that

preCount[j] =
B

16
(j − 1).

Now, we find which of the bj buckets allotted to this pivot
interval will hold our current element v. We compute this via
a linear projection and add the previous buckets:

buckets[`] = bslopes[j]· (vec[`]− leftPivots[j])c
+ preCount[j].

(5)

Note that nothing in this process required the use of any
other element in the data; this is a completely independent
operation for the individual data element v. Thus, once the
bucket definition via leftPivots, rightPivots, and
slopes have been received on the nodes and stored in
shared memory, the assignment of the buckets is completely
parallelized.

To track how many data elements have been assigned
to each bucket, we simply increment a counter for each
bucket. To maintain as much independence as possible, we
provide a separate counter for each multiprocessor on each
GPU on each node. In doing so, we minimize the likelihood
that we need to simultaneously increment the same counter
which would cause an atomic operation conflict and queuing.
The local counts from each of the multiprocessors are then
provided to the node’s CPU to form a B × numBlocks
array, CounterArray, since we launch the GPU with one
block per multiprocessor. This array now defines the bucket
counts for each portion of the local data that we assigned to
buckets.

To prepare to send these counts to the host, we transform
the total bucket counts in CounterArray from individual
counts to a B × numBlocks cumulative count for each
bucket, analogous to [7]. This array also makes it possible
for the future Reduce subroutine to know exactly how many
elements of each block are assigned to a specific bucket
while also knowing the number of elements assigned to that
bucket from all lower indexed blocks. This will help avoid
any writing conflicts between multiprocessors/blocks.

When all local elements have been assigned to buckets and
the local bucket counts completed, the local bucket counts
are then sent from each of the q− 1 nodes back to the host.
Since there are B buckets, this requires

c1,2 = B · (q − 1) (6)

communications. At this point every element in the set S
has been assigned to a bucket, and the host machine knows
exactly how many elements each node assigned to each
bucket.

3) Phase 1: Identify Active Buckets
While the host also participated in the assignment and
counting of the data in its local memory, the host receives
local bucket counts from each node and adds them to a
universal bucket count. To know which bucket contains one
of the desired order statistics, the host runs through this
vector carrying a cumulative sum. When the cumulative sum
is less than k after summing i − 1 buckets but greater than
or equal to k after adding the count from bucket i, then
the kth order statistics lies in bucket i. In this simple pass
through the universal bucket count vector, we flag as active
all buckets which contain at least one of the desired order
statistics.

In the implementation, we have a vector of desired order
statistics, DesiredOrderStats, and an equal length vec-
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tor indicating which bucket contains that order statistic. Since
multiple order statistics might end up in the same bucket, we
form an auxiliary vector, UniqueActiveBuckets, and
we record the number of elements remaining in each unique
active bucket with the vector UniqueActiveCounts. The
elements assigned to the unique active buckets are now the
only candidates still in consideration to be one of our desired
order statistics. This subroutine requires only local action on
the host and no communication between the host and the
nodes (c1,3 = 0).

4) Phase 1: Reduce
To start this fourth subroutine, Reduce, the data still in
contention are known to be exactly those data assigned to one
of the buckets in UniqueActiveBuckets; this reduction
necessitates updating the order statistics. If α is the kth order
statistic from S, and we are able to eliminate ` elements less
than α, then α becomes the (k−`)th order statistic of the re-
duced set. We apply this logic to the full set of order statistics
by using the cumulative bucket counts and the counts of the
active buckets, UniqueActiveCounts. The host stores
the updated order statistics in UpdatedOrderStats.

To restrict our attention to the data still in con-
tention, the data on the nodes assigned to a bucket in
UniqueActiveBuckets will simply be written to a new
local vector, ReducedVector. Thus, the host must send
UniqueActiveBuckets and UniqueActiveCounts
to each of the q − 1 nodes. This requires at most

c1,4 = 2 ·m · (q − 1) (7)

communications.
Let us again fix r ∈ {0, . . . , q − 1}, let vec represent

the nr elements of S on node r, and consider the local
element v = vec[`] for some fixed ` ∈ {0, . . . , nr − 1}.
To see if v is still in contention to be one of our order
statistics, we check the bucket to which we assigned it and
stored locally in buckets[`]. If buckets[`] is not one
of the active buckets in UniqueActiveBuckets, we do
nothing. On the other hand, if buckets[`] is a member of
UniqueActiveBuckets, we want to write v to the new
auxiliary vector.

The nodes, in particular the GPUs on these nodes, still
have the same information they ended with after Assign
Buckets. In addition to leftPivots, rightPivots, and
slopes, each node has a local counter CounterArray,
which was cumulatively summed across blocks. This makes
the new task of writing the elements of the active buckets
to a new reduced vector much faster. If v is to be written
to the new auxiliary vector, we can use the information
in CounterArray to write v from its specific instruction
block to a specific segment of ReducedVector. To avoid
conflicts, the address we write to is given as a pointer that
is atomically incremented. By writing to these very small,
specific segments of ReducedVector, potential atomic
conflicts are overwhelmingly avoided.

After retaining only the elements in the active buckets
in the vector ReducedVector on each node, and recom-
puting the order statistics in UpdatedOrderStats, we
have a new distributed multiselection problem to address.
If the sampling strategy provided good approximate order
statistics for the pivot intervals, we expect them to form a
KDE and thus the total size of the newly reduced data set
to be approximately m

B · n.

5) DISTRIBUTEDBUCKETMULTISELECT: Phase 2
For DISTRIBUTEDBUCKETMULTISELECT, each node will
send its portion of ReducedVector to the host
where the host will apply SORT&CHOOSE to select
UpdatedOrderStats from the consolidated reduced data
set. With data evenly distributed among the q nodes coming
from a uniform distribution, this final step has the expected
communication cost of

c∗2,1 =
m

B
· n
q
· (q − 1). (8)

B. Distributed Iterative Bucket Multiselect
The communication requirement (8) to apply
SORT&CHOOSE after the Reduce subroutine of
DISTRIBUTEDBUCKETMULTISELECT may still be
prohibitively expensive, e.g. when there are more than
223 elements in the data (∼32MB) and we want 101 order
statistics (see Figure 1). To avoid consolidating the reduced
data at the host, we employ the strategy of the original
BUCKETSELECT algorithm [16] and iterate simultaneously
on all of the active buckets at the nodes.

Our main algorithm, DISTRIBUTEDITERATIVEBUCKET-
MULTISELECT or DIBMS, performs an identical first phase
to the first phase of DISTRIBUTEDBUCKETMULTISELECT.
Instead of sending the local reduced vectors to the host,
DIBMS leaves the data on the local machines and iterates on
these reduced vectors. To do so, DIBMS defines new buckets
based on the active buckets from Phase 1, and proceeds
through the same four subroutines. The iteration continues
until the order statistics are identified.

Phase 2 addresses the selection problem defined by the
Reduce subroutine from Phase 1, or from a previous iteration
from Phase 2. The reduction in Phase 1 or the previous
iteration produces a new problem that comes with important
knowledge about the data. Phase 2 remembers the relevant
information from the previous pass through the data in order
the create the new pivot intervals and define the buckets for
this iteration. In the following, we use “old” to indicate the
information or variables have come from the prior phase or
iteration.

1) Phase 2: Create Buckets
The previous reduction provides a new problem definition
along with precise knowledge of exactly how many elements
of S live in the each of the old active buckets. The endpoints
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of the old active buckets define2 our new pivot intervals.
Fortunately, those endpoints were determined by the linear
projections defining the bucket assignments ((5) or (13)). So,
we can simply invert those linear projections to calculate the
exact left and right endpoints of old active buckets. When we
compute these left and right endpoints, we use them as the
left and right pivots to form a pivot interval for each unique
active bucket. So we now have P pivot intervals where P
is the number of unique active buckets from the previous
reduction (either phase 1 or the last iteration).

In other words, we now have

P = numUniqueActive ≤ m

left and right pivots to define. For each i = 0, . . . , P − 1, a
binary search finds the index j of the old pivots so that the
active bucket is in the jth pivot interval. Letting olPvt
and orPvt be abbreviations for oldleftPivots and
oldrightPivots, the new pivots are defined as follows:

for i = 0, . . . , P − 1,

bucket = oldUniqueActiveBuckets[i],

Fix j : bucket ⊂ [olPvt[j],orPvt[j]] .

Now let
left = oldleftPivots[j],

precount = oldpreCount[j] =
j−1∑
k=0

bk,

slope = oldslopes[j],

(9)

so that

leftPivots[i] = left+
bucket− precount

slope
,

rightPivots[i] = left+
bucket+ 1− precount

slope
.

(10)
In the spirit of the KDE intervals, we want to allot the

buckets to the pivot intervals so that they will all capture
roughly the same number of elements. Old active buckets
containing lots of elements will need more buckets in this
iteration than old active buckets with relatively few elements
assigned. With totalCount being the number of elements
left in our new vector, we define the number of buckets per
pivot interval as

for i = 0, . . . , P − 1

bi =round
(
oldUniqueActiveCounts[i]

totalCount
·B
)
.

(11)

To ensure we always make progress, we insist that every
pivot interval get at least two buckets, bi ≥ 2 for all i, while
also ensuring we use at most B buckets, B =

∑
bi.

These new allotments require a new exclusive sum of
the buckets allotted to previous pivot intervals. Starting with

2A conceptual schematic of the iterative bucket definitions is provided
in the Supplementary Material [24, Fig. S1].

preCount[0] = 0, we then have

preCount[i] =
i−1∑
k=0

bk

for i = 1, . . . , P − 1. Finally, with these precounts, we can
define the new set of slopes for these pivot intervals. For the
slopes, the definition is identical to that of (2):

for i = 0, . . . , P − 1

slopes[i] =
bi

(rightPivots[i]− leftPivots[i])
.

(12)
We now have completely defined the buckets for this phase

and no longer need to remember any of the old information.
The host must send these bucket definitions to each of the
q−1 nodes. Sending leftPivots, rightPivots, {bi},
and slopes to the remote nodes requires

c2,1 = 4 · P · (q − 1)

communications.

2) Phase 2: Assign Buckets
The Assign Buckets subroutine is essentially identical to that
of Phase 1. While the number of buckets allocated to each
pivot interval may not be the same, this is accounted for in
(12) so that the completely parallelized bucket assignment is
defined by

buckets[i] = bslopes[i]· (vec[i]− leftPivots[i])c
+ preCount[i].

(13)
In identical fashion to Phase 1, when an element of the
vector is assigned to bucket number i, a counter is incre-
mented. Since we are using the same number of buckets,
B, CounterArray remains a B×numBocks array. Prior
to the bucket assignment it simply needs to be allocated in
shared memory and set to zero. The use of an array allows
each multiprocessor to increment its own atomic counter in
order to minimize any atomic queuing. In order to determine
which of these newly assigned buckets contain some of
the desired order statistics, we compute an inclusive sum
of CounterArray across the blocks. The final column
containing the local bucket counts is the sent back to the
host; this again requires

c2,2 = B · (q − 1)

communications.

3) Phase 2: Identify Active Buckets
Identify Active Buckets is also unchanged: the host ac-
cumulates the buckets counts from the remote nodes and
includes its own assignment tallies to form a complete count
of bucket assignments for the active data. The host passes
through this universal count, and, for each desired order
statistic, determines the bucket that must contain it. It records
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both the bucket and the number of elements in this bucket
for each order statistic. From these vectors, we can form
UniqueActiveBuckets and UniqueActiveCounts
as in Phase 1. Again, there are no distributed communica-
tions associated with Identify Active Buckets (c2,3 = 0).

4) Phase 2: Reduce
We begin the reduction by determining if we have found
any of the desired order statistics. With both the KDE of
Phase 1 and the proportionally distributed buckets in Phase
2, bucket counts should be roughly equal. Therefore, we have
an expected reduction in problem size by a factor of

(
m
B

)1+k

where k is the number of iterations in Phase 2. So, if we
are searching for the m = 101 percentiles with B = 213

buckets, then the first time we arrive at the Reduce subroutine
in phase 2, we would expect our problem size to be roughly
1.52 × 10−4 times its original size. This reduction allows
us to extract the identified order statistics for comparatively
small communication and computation costs.

If a specific bucket is known to contain an order statistic
and also has a count of 1, we have identified one of our
desired order statistics. We need to retrieve the value of this
single element from its currently unknown location, possibly
on any of the nodes or the host. To minimize communication,
DIBMS forms a list of all buckets that have a unique element
that must be an order statistic. It sends this target list to
all remote nodes who utilize their local counts to determine
which desired order statistics reside in the data on that node.
Each node then sends any order statistics it finds back to the
host. This requires at most

m · (q − 1) +m

communications since the target list of at most m order
statistics was sent to the q − 1 nodes with at most m
communications of the correct values back to the host.

It also then updates the list of yet-to-be-found-but-still-
desired order statistics in UpdatedOrderStats, removes
the corresponding buckets from UniqueActiveBuckets,
and updates the UniqueActiveCounts. The two vectors
of unique buckets and corresponding counts need to be
sent out to all of the nodes; this requires 2 · m · (q − 1)
communications. Therefore, this subroutine in phase two
uses at most a total of

c2,4 = 3 ·m · (q − 1) +m

communications.
To write the active elements to ReducedVector, the

Reduce subroutine has all the same advantages it had in
Phase 1. Locally, each node knows how many local elements
were assigned to each bucket by each parallel instruction
block. The cumulative summing at the end of the Assign
Buckets subroutine helps the blocks know exactly which

portions of a new3 vector it will write. After the reduce sub-
routine, each node has a local version of ReducedVector.

5) Phase 2: Stopping Criteria
An often overlooked but incredibly important aspect of an
algorithm is stopping it correctly. As noted in the Reduce
subroutine of Phase 2 , each time an active bucket contains
just a single element, we can extract the associated value
from the data and remove this order statistic from the
problem. In the ideal scenario, this happens with all desired
order statistics. In reality, we must also be able to identify
when the value of the desired order statistic is a repeated
value in the data set.

Suppose we want to find the kth largest value, but that
value appears in the data set multiple times so that it is also
the jth and `th largest value for j < k < `. The bucket to
which this value is assigned will never have fewer than `−j
values in it. Rather than scanning the entire data set to check
the values assigned to a specific bucket, we use the proxy
that the data size is not changing. For example, if we run
an iteration of phase 2 and have w elements in our reduced
vector, and then run another iteration of phase 2 resulting
in a new reduced vector also containing w elements, we
anticipate that the active buckets all contain only a single,
repeated value.

Rather than check each of the active buckets for any
variance, we simply run an extra iteration. When an iteration
does not reduce the problem size, the probability the active
buckets contain multiple values is very small. Since that
probability is not zero, we repeat the reduction process
one more time. If the data does not change for a second
consecutive iteration, we declare that all remaining active
buckets have a single repeated value; we return that value as
the order statistic.

This extra iteration hedges against a very low probability
event and costs the algorithm in performance. The payoff is
this heuristic nearly guarantees we are stopping the algorithm
correctly. In the incredibly low probability event4 that we
select an incorrect value v + ε for this order statistic value
v, this extra iteration ensures that ε is reduced by an extra
factor 1

bi
where bi is the number of buckets allotted to the

active bucket i containing v.

III. Analysis of Expected Communication Costs
In Section II we provided expected communication costs, or
upper bounds on those costs, for each of the four subroutines
in each phase. Those are consolidated in Table 2.

We can see from this collection that the expected com-
munication cost of DISTRIBUTEDBUCKETMULTISELECT is

3In implementation, this “new” vector is the reuse of the vector that was
reduced in the preceding iteration or phase.

4No incorrect order statistics were selected in empirical testing while
using this stopping criteria.
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TABLE 2. Expected communication costs by phase and subroutine.

Expected Cost

Phase Subroutine DISTRIBUTEDBMS DIBMS

1 Create 50(q − 1) + 1024 50(q − 1) + 1024

1 Assign B(q − 1) B(q − 1)

1 Reduce 2m(q − 1) 2m(q − 1)

2 Create m
B

· n
q
· (q − 1) 4P (q − 1)

2 Assign 0 B(q − 1)

2 Reduce 0 3m(q − 1) +m

TABLE 3. Expected Communication Savings. The ratios of expected com-

munications for DIBMS to SORT&CHOOSE and to DISTRIBUTEDBMS.

# Nodes Data Size # OS Expected Communications Ratio

q n m DIBMS
SORT&CHOOSE

DIBMS
DISTRIBUTEDBMS

4

26

11 0.0060 2.3476
101 0.0080 0.7358
501 0.0144 0.3036

1001 0.0241 0.2578

28

11 0.0015 1.0736
101 0.0024 0.2479
501 0.0041 0.0895

1001 0.0067 0.0730

given by(
4∑

i=1

c1,i

)
+c∗2,1 =

(
50 +B + 2m+

m

B

n

q

)
·(q−1)+1024.

DISTRIBUTEDBUCKETMULTISELECT is not iterative so this
cost does not depend on the required number of iterations.

On the other hand, DIBMS does depend on the number
of iterations, Itr, in phase 2. Therefore, the expected com-
munication for DIBMS is given by(

4∑
i=1

c1,i

)
+Itr ·

(
4∑

j=1

c2,j

)
= (50 +B + 2m) · (q − 1) + 1024

+ Itr · ((4P +B + 3m)(q − 1) +m)

For the worst case scenario of uniformly spaced order
statistics each needing their own active bucket, we expect
that uniformly distributed data of size n will be reduced
in each iteration by the factor m

B . The expected number of
iterations is

E[iter] =
⌈
log B

m
(n)
⌉
.

In accordance with the heuristic stopping condition described
above, DIBMS will take one extra iteration.

In Table 3, we compute the expected ratios of communi-
cation costs for DIBMS compared to both SORT&CHOOSE
and DISTRIBUTEDBMS. A more exhaustive set of tables
are provied in the Supplementary Material [24, Tables S3-
S6]. Regardless of the size of the data set, the number
of order statistics, or the number of nodes, we expect a
significant savings in communications using either of our
algorithms versus SORT&CHOOSE. We can also see that

when the number of order statistics is small (m = 11) the
communication requirements of DISTRIBUTEDBMS are low
enough that the iterative version of the algorithm requires
more communication.

When we want a moderate number of order statistics
(m = 101), the expected communication costs of the two
algorithms are very similar until around n = 225. As the
problem sizes grow, DIBMS has its advantage grow. Table 3
shows that when selecting the percentiles from distributed
data with 228 elements, the number of expected communica-
tions for SORT&CHOOSE is more than 400× that of DIBMS;
DISTRIBUTEDBMS requires over 4× the communications of
DIBMS. When selecting a larger number of order statistics,
DIBMS has a communication cost savings on smaller data
sets. DIBMS is expected to be superior in communication
cost starting around n = 223 for m = 501 and n = 222 for
m = 1001.

In the next section, we will see that the communication
savings is further enhanced by the computational savings.
The ratios of performance times closely mirror Table 3, but
are more favorable to DIBMS.

IV. Performance Comparisons
In this section, we measure and compare the performance of
SORT&CHOOSE, DISTRIBUTEDBMS, and DIBMS through
empirical testing. The tests are random and the order the
algorithms are asked to solve the same problems is randomly
assigned. We see in these results that while communication
costs are a key factor, the computational advantages of
DIBMS and DISTRIBUTEDBMS are also important.

A. Empirical Testing Environment
These tests were conducted on a local area network with
machines of identical hardware and operating systems. Each
machine running Debian GNU/Linux 12 (bookworm) is
equipped with four Intel Xeon Gold 6326 CPUs @ 2.90GHz
and one NVIDIA T1000 Graphics Processing Unit from the
Turing architecture. Each T1000 GPU has 8GB of GDDR6
global memory and 896 compute cores across 14 streaming
multiprocessors (SM) with 96KB of RAM of dedicated
shared memory per SM. The code was compiled in sequence
for distributed execution using CUDA Version: 12.4 and
Open MPI 4.1.4.

For each test, a series of random data sets S were
constructed using CUDA. Each distributed algorithm of
SORT&CHOOSE, DISTRIBUTEDBMS, and DIBMS solved
the multiselection problem and verified their results against
each other5. No errors were detected in any of the tests by
any of the algorithms.

The data in S were drawn from the uniform, normal, or
half normal distribution. The reduction in performance for

5Many tests were also checked against the process of consolidating all
of the data set at the host and using a local SORT&CHOOSE. No errors were
found during any such test.
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TABLE 4. Selecting percentiles and 1/5-percentiles: mean timings (ms) and performance ratios for DIBMS to SORT&CHOOSE and to DISTRIBUTEDBMS.

Data Type Float

Data Distribution Uniform Normal

Data Size # Nodes # OS Run time (ms) Observed Ratios Run time (ms) Observed Ratios

n q m DIBMS DIBMS
SORT&CHOOSE

DIBMS
DISTRIBUTEDBMS DIBMS DIBMS

SORT&CHOOSE
DIBMS

DISTRIBUTEDBMS

224 4
101 97.09 0.0224 1.1472 112.95 0.0261 1.6830
501 146.09 0.0337 0.4483 144.74 0.0334 0.3824

226 4
101 101.82 0.0059 0.4106 118.44 0.0068 0.6485
501 139.26 0.0080 0.1143 165.26 0.0095 0.1148

228 4
101 116.59 0.0017 0.1277 132.87 0.0019 0.2084
501 153.87 0.0022 0.0324 194.97 0.0028 0.0346

Data Type Double

Data Distribution Uniform Normal

Data Size # Nodes # OS Run time (ms) Observed Ratios Run time (ms) Observed Ratios

n q m DIBMS DIBMS
SORT&CHOOSE

DIBMS
DISTRIBUTEDBMS DIBMS DIBMS

SORT&CHOOSE
DIBMS

DISTRIBUTEDBMS

224 4
101 83.74 0.0097 0.5605 83.88 0.0097 0.5235
501 132.06 0.0153 0.2090 132.64 0.0153 0.1835

226 4
101 98.61 0.0028 0.1961 101.48 0.0029 0.1817
501 149.28 0.0043 0.0613 156.46 0.0045 0.0566

228 4
101 126.98 0.0009 0.0665 128.90 0.0009 0.0608
501 188.51 0.0014 0.0194 190.13 0.0014 0.0171

normal or half-normal distributions was as expected based
on results from [7]. The data presented in this section is for
data sets drawn from the uniform distribution; the additional
results for data drawn from the normal and half-normal data
sets can be found in the Supplementary Material [24].

The order statistics were also drawn from a variety of
distributions. However, uniformly spaced order statistics
such as the percentiles are the most challenging for DIS-
TRIBUTEDBMS and DIBMS. When the order statistics are
uniformly spaced, the likelihood of having one active bucket
for each order statistic is maximized. Therefore, we only
present results for uniformly spaced order statistics. See [7]
for a discussion on how the algorithms would benefit from
other distributions of order statistics.

B. Results
Table 4 offers a small sample of results when the data
set, S, is distributed across four nodes. The run time for
DIBMS is given along with the ratio of run times for
DIBMS to SORT&CHOOSE and DISTRIBUTEDBMS. When
these ratios are less than 1, this indicates that DIBMS has a
smaller average run time than the algorithm it is compared
to. In the table, problems where DIBMS has a smaller
average run time are listed in blue. In two cases for Table 4,
when S has 224 elements and we seek the 101 percentiles,
DISTRIBUTEDBMS has a smaller run time than DIBMS.
This is indicated with a ratio greater than 1 reported in red.
For all other problems in this table, DIBMS has the smallest
average run time. A significant expansion of this data is
available in the supplementary material [24, Table S7].

The performance of SORT&CHOOSE is as expected in
Figure 1 with complete dependence on the size of the data

set, n = |S|. Similarly, we can observe from (b) and (c)
that when the number of desired order statistics is high,
DISTRIBUTEDBMS also has a run time that is proportional
to n = |S|. In all three cases, we see that the communication
avoiding DIBMS has limited growth as the total data size
n grows. Because DIBMS only sends control parameters,
DIBMS run time is not significantly impacted by data type.

Instead, the run time for DIBMS is proportional to the
number of order statistics. With uniformly spaced order
statistics, we can assume that the number of pivots, P , in
each iteration of phase 3 is equal to the number of order
statistics m. Assuming P = m, an equivalent expression for
the communication cost of phase 2 of DIBMS is

4∑
j=1

c2,j = Itr · (7(q − 1) + 1) ·m+ Itr ·B · (q − 1).

Since the number of buckets B and the number of nodes q
are independent of the problem, we see that this communica-
tion cost is proportional to the number of order statistics. In
Figure 2 observe that the run time performance of DIBMS
matches that intuition.

Our interpretation of the overall performance costs for
these algorithms is further supported with Fig. 3. Here the
size of the data set is fixed while the number of desired order
statistics grows from 101 to 1001. We see that the change in
number of order statistics has no bearing on the performance
of SORT&CHOOSE since the entire data set is sorted. We can
also see the performance of DISTRIBUTEDBMS is negatively
impacted by the number of order statistics for data of this
size. The time required to find the order statistics is growing
super linearly. The most consistent performance is from
DIBMS which we understand to be linearly dependent on
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FIGURE 1. Time (log2(ms)) required for SORT&CHOOSE (black) DISTRIBUTEDBMS (red), DIBMS (blue) to find the (a) 101 percentiles, (b) 501
1
5 th-percentiles, and (c) 1001 1

10 th-percentiles for varying sizes of data sets, S, with the entries drawn from the uniform distribution when the data is of
type double (solid) or float (dashed).
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FIGURE 2. Time (ms) required for DIBMS (blue) to find the 101, 501, and
1001 uniformly spaced order statistics for varying sizes of data sets with
the entries drawn from the uniform distributions when the data is of type
float (dashed).
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FIGURE 3. Time (log2(ms) required for SORT&CHOOSE (black)
DISTRIBUTEDBMS (red), DIBMS (blue) to find uniformly spaced order
statistics for data sets of size 225 with the entries drawn from the uniform
distribution when the data is a double (solid) or float (dashed).

the number of order statistics. The positive slope represents
the increase in algorithm run time that is also impacted
by a likely increase in the number of iterations. Figure 3
reiterates that DIBMS run time is not impacted by data
type. The transfer of data and the sorting in the final step of
the SORT&CHOOSE and DISTRIBUTEDBMS are responsible
their decreased performance on double precision data.

Finally, we investigate the run time performance impact of
the number of nodes in our distributed system. In Figure 4
we present this data in two ways. First, in (a) we fix the total
size of the data and spread it evenly across the nodes so the
data points above the horizontal axis are for a fixed total
size. In other words, the run time for 8 nodes is for solving
a problem where each node has n

8 elements on it. In (b),
we instead plot the number of elements at each node. Note
that the plots look relatively similar in both cases because
the run time of the algorithm grows slowly.

V. Conclusion
With data sets distributed across many locations, it can
be advantageous to understand the full data set with a
concise representation. Determining exact order statistics
is superior to sampling methods and can provide highly
accurate representations of the full set. Accurate approximate
density functions are easily formulated with order statistics.

When the data size or the number of order statistics are
small, and you are willing to communicate a nontrivial por-
tion of your data, DISTRIBUTEDBMS can be highly effective
and much faster than SORT&CHOOSE. Even when distributed
data sets are enormous, DIBMS will obtain the percentile
order statistics in fractions of a second. Across four nodes,
DIBMS can find 501 order statistics from a uniform data set
with 228 elements in roughly 155 milliseconds, about 450×
faster than SORT&CHOOSE while reducing communications
by a factor of 240×.

The efficiency of DIBMS shows that we can quickly
select exact order statistics from distributed data without
consolidating the data.
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FIGURE 4. Time (log2(ms)) required for DIBMS (blue) to find 101 uniformly spaced order statistics for data sets distributed across 2, 4, 6, or 8 nodes.
The data has elements drawn from the uniform distribution of type float (dashed). (a) The horizontal axis is the total data size. (b) The horizontal axis is
the size of data on each node.
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