
OJ Logo

; revised ; date of current version 10 December, 2024.

Supplementary Material:
Fast Distributed Selection

with Graphics Processing Units
JEFFREY D. BLANCHARD∗, RUIZHE FU†, AND TRISTAN KNOTH‡

1Mathematics Department, Grinnell College, Grinnell, IA 50112 USA
2Computer Science Department, Grinnell College, Grinnell, IA 50112 USA and

Fu Foundation School of Engineering and Applied Science, Columbia University, New York, NY 10027 USA
3Persimmons, Inc., San Jose, CA, 95131 USA

CORRESPONDING AUTHOR: Jeffrey D. Blanchard (email: jeff@math.grinnell.edu).

Copyright © 2024 J.D. Blanchard, R. Fu, and T. Knoth.

ABSTRACT Supplementary Material for J.D. Blanchard, R. Fu, T. Knoth, Fast Distributed Selection with
Graphics Processing Units, 2024, submitted.

INDEX TERMS Selection, Distributed Selection, Multiselection, Order Statistics, Parallel Selection,
Graphics Processing Units, GPGPU, Distributed Computing.

Supplement to II. Distributed Multiselection
The algorithms DISTRIBUTEDBMS and DIBMS are rela-
tively straightforward in principle: send control parameters
and counts between the nodes and host while assigning data
on the nodes to buckets until we identify the order statistics.
The execution of these tasks requires meticulous bookkeep-
ing with many parameters and counts. To aid a reader of the
main paper [1], we reproduce the main article’s Table 1 as
Table S1 describing the size variables. Furthermore, Table S2
lists the variable names used in the description of the algo-
rithm. For clarity, the data type (float, double, int), maximum
size of the data structure (memory requirement), and location
of the variable are given. In practice, the maximum size is the
size of allocation so that required data can be pre-allocated
at the start; these allocations are reused from iteration to
iteration. The location is where the variable is created or
lives, and we have indicated the primary communication
required for use in the distributed setting. When a location
is listed as Each Node Only, this means each code has its
own distinct version of this variable and the contents of this
variable are never transmitted. Finally, a basic description of
the variable is given to aid the reader in keeping track of the
relationships between these variables and the algorithm.

S distributed data set
n size (total number of elements) of data set
m number of order statistics
q number of nodes (including host node 0)
nj size of data on node j ∈ {0, . . . , q − 1}
B total number of buckets used in algorithms
P number of pivot intervals
bi number of buckets given to pivot interval i ∈ {0, . . . , P − 1}

TABLE S1. Reference list of variables.

Supplement to II.B. Distributed Iterative Bucket
Multiselect
Each iteration of DIBMS retains all data assigned to one
of the active buckets. When an active bucket has only one
element, the order statistic is found and removed from the
problem. Figure S1 gives a schematic of the iteration when
there are B = 8 buckets. In reality, the data are not physically
moved to a bucket; this figure demonstrates the concept of
creating new buckets from one iteration to the next including
reallocating the number of buckets per pivot interval, bi.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME , 1

Blanchard, Fu, Knoth: Supp. Mat. for Fast Distributed Selection with GPUs: December 2024

FIGURE S1. A schematic of how buckets are removed and created in DIBMS using the information from the previous iteration when searching for 4
order statistics using 8 buckets.

Variable Name
Data Max

Location Description
Type Size

S T n Distributed The complete data distributed across all nodes.

vec T ni Each Node Only The local vector holding the local elements of the data set.

T P

The left and right endpoints of the pivot intervals. The number
of pivot intervals, P , is 16 in Phase 1. During Phase 2, P is
the number of unique active buckets from the previous phase or
iteration.

leftPivots Created on Host
rightPivots Sent to All Nodes

slopes T P
Created on Host
Sent to all Nodes

The vector of slopes defining a linear function whose integer part
partitions the corresponding pivot interval into bi buckets.

bi int P
Created on Host
Sent to all Nodes

A vector indicating the number of buckets assigned to each pivot
interval.

preCount int P Each Node Only
An inclusive sum of the number of buckets assigned to each pivot
interval.

buckets int ni Each Node Only
A vector recording the bucket to which the corresponding data
value in vec is assigned.

CounterArray int B × numBlocks
Each Node Sends
1 Column to Host

An array with position i, j indicating the number of elements in
vec that the GPU block j assigned to bucket i.

DesiredOrderStats int m Host Only The list of order statistics which we are still searching for.

UniqueActiveBuckets int m
Created on Host
Sent to all Nodes

The unique list of buckets that contain one of the
DesiredOrderStats.

UniqueActiveCounts int m
Created on Host
Sent to all Nodes

The number of entries in the full data set, S, that were assigned to
the corresponding active bucket in UniqueActiveBuckets.

ReducedVector T ni Each Node Only
Elements from vec which were assigned to one of
UniqueActiveBuckets.

UpdatedOrderStats int m Host Only
The desired order statistics of ReducedVector that are the
same values as the DesiredOrderStats from the last data
set.

TABLE S2. Descriptions of variables. The data type T refers to primitive, numeric data types in CUDA-C, e.g. float, double, or (unsigned) integer. For a

specific problem, T is fixed.

2 VOLUME ,

OJ Logo

Supplement to III. Analysis
As stated in the main article [1], both DISTRIBUTEDBMS
and DIBMS are expected to have massive communication
savings over SORT&CHOOSE for any reasonable number
of order statistics. Of course, if we asked for the same
number of order statistics as we have buckets, there is a
great likelihood that no problem reduction could occur. We
have focused on 11, 101, 501, and 1001 order statistics as
representative of the deciles, percentiles, 1

5 th-percentiles, and
1
10 th-percentiles. These numbers of order statistics provide
incredibly accurate approximations of density functions for
your data set.

Tables S3-S6 show the ratios of the expected commu-
nications cost for DIBMS to SORT&CHOOSE and DIS-
TRIBUTEDBMS. The blue numbers indicate that DIBMS
will require fewer communications than the algorithm it is
compared to; red numbers indicate DIBMS will require
more communication. The tables focus on a single number of
order statistics, m, while looking at a range of data sizes and
number of nodes. The tables capture the fact that the analysis
counted every communication to each node. In network
topologies where communication can happen simultaneously
to all nodes, DIBMS could have an even greater advantage.

In Table S3 we see that the smaller number of order
statistics indicates that DISTRIBUTEDBMS requires fewer
communications. If transferring the data assigned to the 11
active buckets (expected to be less than 1% of the total data)
is acceptable, DISTRIBUTEDBMS will be very effective. We
see that as the data sizes grow, even a small number of order
statistics will eventually be too expensive.

Note that in Tables S3-S6 there are very few occasions
where we expect DIBMS to require more communication.
Those occasions occur when the total data set is small and
the number of nodes large. For 101 order statistics, DIBMS
requires the fewest communications for even 8 nodes once
n = 225. With 501 order statistics, that required data size
drops to 224 and falls to 222 when we seek 1001 order
statistics.

Supplement to IV. Performance Comparisons
In the main article, the empirical performance comparisons
presented focused on data sets S drawn from the uniform
distribution. In this supplementary material, we reproduce
some of those results for ease of comparison to additional
observations when the data in S is drawn from the normal
and half normal distributions. The half normal distribution is
obtained by taking the absolute value of a set of data drawn
from the normal distribution. The overarching observation is
that the algorithms’ use of the kernel density estimator via
small sampling in the first phase followed by redistribution
of buckets in the second phase reduce the impact of the
distribution from which the data is drawn. While problems
with data drawn from the normal and half normal distribu-
tions typically take longer to solve, the run time variations
across data distributions are not substantial: the run time
from solving a problem created with normally distributed
data is always within 30% of the run time of a problem
from the uniform distribution.

We begin with a supplement to [1, Table 4] in Table S7.
In this table we expand the range of order statistics and data
size and show run time performance ratios for DIBMS to
SORT&CHOOSE and to DISTRIBUTEDBMS. The run times
displayed can be useful when interpreting the figures that
follow.

In Figs. S2 and S3 we provide the data analogous to [1,
Fig. 1], but for the normal and half normal distributions.
We see in these two figures a nearly identical relationship
between the algorithms with slightly longer run times on the
normal and half normal distributions.

In Fig. S4, we examine the performance of DIBMS when
selecting 101, 501, and 1001 order statistics from single
precision data. We reproduce the results for uniform data
from [1, Fig. 2] in (a) and include the same representation
of performance when the data are from the (b) normal and
(c) half normal distributions. Similarly, Fig. S5 includes a
reproduction of [1, Fig. 3] in (a) with data drawn from the
(b) normal and (c) half normal distributions. Due to limits
on shared memory capacity, the double precision data was
only tested to 501 order statistics. Data sets drawn from the
half normal distribution were only tested in single precision.
From Figs. S4 and S5 we observe that while there can
be up to a thirty percent increase in run time, the overall
relationships between the algorithms is consistent.

Finally, Fig. S6 produces [1, Fig. 4] but for double preci-
sion data. The double precision data requires more memory
and therefore the results are only for 225 elements per node.
As expected, we see the same relationships between the
performances on differing numbers of nodes. Both [1, Fig. 4]
and Fig. S6 indicate that increasing the number of nodes
increases the run time despite the ability to broadcast a
message to all nodes simultaneously.

REFERENCES
[1] J. Blanchard, R. Fu, and T. Knoth, “Fast distributed selection with

graphics processing units,” Submitted, 2024.

VOLUME , 3

Blanchard, Fu, Knoth: Supp. Mat. for Fast Distributed Selection with GPUs: December 2024

TABLE S3. Expected Communication Savings. The ratios of expected

communications for DIBMS to SORT&CHOOSE and to DISTRIBUTEDBMS for

11 order statistics.

OS Data Size # Nodes Expected Communications Ratio

m log2(n) q DIBMS
SORT&CHOOSE

DIBMS
DISTRIBUTEDBMS

11

22
2 0.0110 3.8011
4 0.0324 4.5243
8 0.0753 4.9485

23
2 0.0055 3.0836
4 0.0162 3.9666
8 0.0376 4.5937

24
2 0.0027 2.2386
4 0.0081 3.1820
8 0.0188 4.0175

25
2 0.0014 1.4461
4 0.0041 2.2801
8 0.0094 3.2119

26
2 0.0007 0.8466
4 0.0020 1.4551
8 0.0047 2.2924

27
2 0.0003 0.4629
4 0.0010 0.8442
8 0.0024 1.4578

28
2 0.0002 0.2428
4 0.0005 0.4589
8 0.0012 0.8436

TABLE S4. Expected Communication Savings. The ratios of expected

communications for DIBMS to SORT&CHOOSE and to DISTRIBUTEDBMS for

101 order statistics.

OS Data Size # Nodes Expected Communications Ratio

m log2(n) q DIBMS
SORT&CHOOSE

DIBMS
DISTRIBUTEDBMS

101

22
2 0.0143 1.6948
4 0.0421 2.7134
8 0.0979 3.8955

23
2 0.0071 0.9786
4 0.0211 1.7007
8 0.0489 2.7253

24
2 0.0036 0.5303
4 0.0105 0.9739
8 0.0245 1.7025

25
2 0.0018 0.2768
4 0.0053 0.5251
8 0.0122 0.9725

26
2 0.0011 0.1713
4 0.0032 0.3313
8 0.0074 0.6353

27
2 0.0005 0.0866
4 0.0016 0.1691
8 0.0037 0.3303

28
2 0.0003 0.0435
4 0.0008 0.0854
8 0.0019 0.1685

TABLE S5. Expected Communication Savings. The ratios of expected

communications for DIBMS to SORT&CHOOSE and to DISTRIBUTEDBMS for

501 order statistics.

OS Data Size # Nodes Expected Communications Ratio

m log2(n) q DIBMS
SORT&CHOOSE

DIBMS
DISTRIBUTEDBMS

501

22
2 0.0228 0.6892
4 0.0664 1.2587
8 0.1536 2.2196

23
2 0.0114 0.3579
4 0.0332 0.6731
8 0.0768 1.2516

24
2 0.0057 0.1824
4 0.0166 0.3487
8 0.0384 0.6685

25
2 0.0033 0.1058
4 0.0095 0.2041
8 0.0221 0.3978

26
2 0.0016 0.0532
4 0.0048 0.1030
8 0.0110 0.2025

27
2 0.0008 0.0267
4 0.0024 0.0517
8 0.0055 0.1022

28
2 0.0004 0.0133
4 0.0012 0.0259
8 0.0028 0.0513

TABLE S6. Expected Communication Savings. The ratios of expected

communications for DIBMS to SORT&CHOOSE and to DISTRIBUTEDBMS for

1001 order statistics.

OS Data Size # Nodes Expected Communications Ratio

m log2(n) q DIBMS
SORT&CHOOSE

DIBMS
DISTRIBUTEDBMS

1001

22
2 0.0336 0.5266
4 0.0964 0.9721
8 0.2222 1.7880

23
2 0.0168 0.2689
4 0.0482 0.5053
8 0.1111 0.9611

24
2 0.0084 0.1359
4 0.0241 0.2578
8 0.0555 0.4993

25
2 0.0047 0.0762
4 0.0134 0.1452
8 0.0310 0.2839

26
2 0.0023 0.0382
4 0.0067 0.0730
8 0.0155 0.1434

27
2 0.0012 0.0191
4 0.0034 0.0366
8 0.0077 0.0721

28
2 0.0006 0.0106
4 0.0019 0.0202
8 0.0043 0.0399

4 VOLUME ,

OJ Logo

TABLE S7. selecting percentiles, 1/5-percentiles, and 1/10-percentiles: mean timings (ms) and performance ratios for DIBMS to SORT&CHOOSE and

DISTRIBUTEDBMS.

Data Type Float

Data Distribution Uniform Normal

Data Size # Nodes # OS Run time (ms) Observed Ratios Run time (ms) Observed Ratios

n q m DIBMS DIBMS
SORT&CHOOSE

DIBMS
DISTRIBUTEDBMS DIBMS DIBMS

SORT&CHOOSE
DIBMS

DISTRIBUTEDBMS

223 4
101 114.80 0.0529 1.9820 112.32 0.0518 2.2605
501 142.84 0.0659 0.8042 141.22 0.0651 0.6946

1001 183.51 0.0846 0.5562 177.24 0.0817 0.4934

224 4
101 97.09 0.0224 1.1472 112.95 0.0261 1.6830
501 146.09 0.0337 0.4483 144.74 0.0334 0.3824

1001 188.62 0.0435 0.3008 191.89 0.0443 0.2769

225 4
101 98.55 0.0114 0.6984 115.01 0.0133 1.0826
501 148.04 0.0171 0.2392 152.33 0.0176 0.2106

1001 195.15 0.0225 0.1585 211.71 0.0244 0.1568

226 4
101 101.82 0.0059 0.4106 118.44 0.0068 0.6485
501 139.26 0.0080 0.1143 165.26 0.0095 0.1148

1001 203.07 0.0117 0.0835 227.91 0.0131 0.0858

227 4
101 106.07 0.0031 0.2256 123.10 0.0036 0.3753
501 140.99 0.0041 0.0586 180.43 0.0052 0.0638

1001 208.34 0.0060 0.0433 234.49 0.0068 0.0442

228 4
101 116.59 0.0017 0.1277 132.87 0.0019 0.2084
501 153.87 0.0022 0.0324 194.97 0.0028 0.0346

1001 211.29 0.0031 0.0220 271.31 0.0039 0.0256
Data Type Double

Data Distribution Uniform Normal

Data Size # Nodes # OS Run time (ms) Observed Ratios Run time (ms) Observed Ratios

n q m DIBMS DIBMS
SORT&CHOOSE

DIBMS
DISTRIBUTEDBMS DIBMS DIBMS

SORT&CHOOSE
DIBMS

DISTRIBUTEDBMS

223 4
101 97.14 0.0224 0.9979 82.99 0.0191 0.8475
501 137.15 0.0316 0.4104 127.20 0.0294 0.3347

224 4
101 83.74 0.0097 0.5605 83.88 0.0097 0.5235
501 132.06 0.0153 0.2090 132.64 0.0153 0.1835

225 4
101 88.99 0.0051 0.3367 92.45 0.0053 0.3150
501 136.42 0.0079 0.1104 140.19 0.0081 0.0987

226 4
101 98.61 0.0028 0.1961 101.48 0.0029 0.1817
501 149.28 0.0043 0.0613 156.46 0.0045 0.0566

227 4
101 112.49 0.0016 0.1168 111.67 0.0016 0.1023
501 168.54 0.0024 0.0350 172.56 0.0025 0.0312

228 4
101 126.98 0.0009 0.0665 128.90 0.0009 0.0608
501 188.51 0.0014 0.0194 190.13 0.0014 0.0171

VOLUME , 5

Blanchard, Fu, Knoth: Supp. Mat. for Fast Distributed Selection with GPUs: December 2024

23 24 25 26 27 28

6

8

10

12

14

16

23 24 25 26 27 28

6

8

10

12

14

16

23 24 25 26 27 28

6

8

10

12

14

16

(a) (b) (c)

FIGURE S2. Time (log2(ms)) required for SORT&CHOOSE (black) DISTRIBUTEDBMS (red), DIBMS (blue) to find the (a) 101 percentiles, (b) 501
1
5 th-percentiles, and (c) 1001 1

10 th-percentiles for varying sizes of data sets, S, with the entries drawn from the normal distribution when the data is of
type double (solid) or float (dashed).

23 24 25 26 27 28

6

8

10

12

14

16

23 24 25 26 27 28

6

8

10

12

14

16

23 24 25 26 27 28

6

8

10

12

14

16

(a) (b) (c)

FIGURE S3. Time (log2(ms)) required for SORT&CHOOSE (black) DISTRIBUTEDBMS (red), DIBMS (blue) to find the (a) 101 percentiles, (b) 501
1
5 th-percentiles, and (c) 1001 1

10 th-percentiles for varying sizes of data sets, S, with the entries drawn from the half normal distribution when the data is
of type float (dashed).

23 24 25 26 27 28
6.5

7

7.5

8

8.5

101 OS

501 OS

1001 OS

23 24 25 26 27 28
6.5

7

7.5

8

8.5

101 OS

501 OS

1001 OS

23 24 25 26 27 28
6.5

7

7.5

8

8.5

101 OS

501 OS

1001 OS

(a) (b) (c)

FIGURE S4. Time (ms) required for DIBMS (blue) to find the 101, 501, and 1001 uniformly spaced order statistics for varying length of vectors with the
entries drawn from the (a) uniform, (b) normal, and (c) half normal vector distributions when the data is of type float (dashed).

6 VOLUME ,

OJ Logo

101 201 301 401 501 601 701 801 901 1001
6

8

10

12

14

16

18

101 201 301 401 501 601 701 801 901 1001
6

8

10

12

14

16

18

101 201 301 401 501 601 701 801 901 1001
6

8

10

12

14

16

18

(a) (b) (c)

FIGURE S5. Time (log2(ms) required for SORT&CHOOSE (black) DISTRIBUTEDBMS (red), DIBMS (blue) to find uniformly spaced order statistics for
vectors of length of 225 with the entries drawn from the (a) uniform, (b) normal, and (c) half normal vector distributions when the data is of type double
(solid) or float (dashed).

21 22 23 24 25 26 27
5

5.5

6

6.5

7

7.5

8

2 Nodes

4 Nodes

8 Nodes

21 22 23 24 25
5

5.5

6

6.5

7

7.5

8

2 Nodes

4 Nodes

6 Nodes

8 Nodes

(a) (b)

FIGURE S6. Time (log2(ms)) required for DIBMS (blue) to find 101 uniformly spaced order statistics for data sets distributed across 2, 4, 6, or 8 nodes.
The data has elements drawn from the uniform distribution of type double (solid). (a) The horizontal axis is the total data size. (b) The horizontal axis is
the size of data on each node.

VOLUME , 7

