Resource-Guided
Program Synthesis

Tristan Knoth?, Di Wang?, Nadia Polikarpova?, Jan Hoffmann?

'UC San Diego
’Carnegie Mellon University
PLDI 2019

Program Synthesis

Declarative specification

¥

\

Executable program

State of the art

“Find the intersection
of two sorted lists”

¥

Type-directed synthesis

common :: XS: SList a - ys: SList a
-~ v: {L1st a | elems v = elems xs n elems ys}

¥

Synthesizer

@

common = A XS. A yS.
match xs with
NiTl - Nil
cons x xt -
if ! (member x ys)
then common xt ys
else Cons x (common xt ys)

common = A XS. A ys. .
match xs with
Nil - Nil
cons X Xt -
if ! (member x ys)
then common xt ys
else Cons x (common xt ys) yS

common = A XS. A ys. .
match xs with
Nil - Nil
cons X Xt -
if ! (member x ys)
then common xt ys
else Cons x (common xt ys) yS

common = A XS. A ySsS.
match xs with
NiT - NiT
cons X Xt -
match ys with
NiT - NiT
cons y yt -
1if x <y
then common xt ys
else if y < x
then common xs yt
else Cons x (common XS ys)

common = A XS. A ySsS.
match xs with
NiT - Nil
cons x Xt -
match ys with
NiT - Nil
cons y yt -
1if x <y
then common xt ys
else if y < x
then common xs yt
else Cons x (common XS ys)

O(m-n) O(m + n)

common = A XS. A ys. common = A XS. A ys.
match xs with match xs with
NiT - Nil NiT - Nil
cons X Xt - cons X xt -
if ! (member x ys) match ys with
then common xt ys NiT - NiT
else Cons x (common Xt ys) cons y yt -
if x <y

then common xt ys
else if y < x
then common xs yt
else Cons x (common Xs ys)

What we have

“Find the intersection
of two sorted lists”

¥

@

O(m-n)

What we want

“Find the intersection of two
sorted lists in linear time”

¥

@

O(m+n

10

ResSyn

The first resource-aware
synthesizer for recursive programs

Th 1S ta | k “Find the intersection of two
sorted lists in linear time”

@

1. Specification

@

12

Th 1S ta | k “Find the intersection of two
sorted lists in linear time”

@

1. Specification

@

13

Th 1S ta | k “Find the intersection of two
sorted lists in linear time”

¥

1. Specification —
Yy

Analysis Search

g g
@

Th 1S ta | k “Find the intersection of two
sorted lists in linear time”

¥

1. Specification

Synthesizer
. 5 Yy
2. Analysis

Analysis Search

g g
@

Th 1S ta | k “Find the intersection of two
sorted lists in linear time”

¥

1. Specification

Synthesizer
. Ny
2. Analysis

Analysis , Search

3. Search N_J
@

This talk

1. Specification

“Find the intersection of two
sorted lists in linear time”

¥

3
??

18

“Find the intersection of two
sorted lists in linear time”

¥

3
??

Refinement types

19

“Find the intersection of two
sorted lists in linear time”

$ Refinement types

Resource annotations

3
??

20

Refinements:
Synquid

h Type-directed
Program Synthesis

Resource-guided Program
Synthesis

[Polikarpova et. al 2016]

21

Resource annotations:
Refinements: Automated Amortized
Synquid Resource Analysis

n Type-directed ‘

Program Synthesis

Resource-guided Program
Synthesis

[Polikarpova et. al 2016] [Hoffmann et al. 2010]
22

“Find the intersection of two
sorted lists in linear time”

1B |V}

23

v:{Int|v>0}

Refinement types

common = 7?77

Refinement types

common :: XS: SLi1st a -» ys: SList a

common = 7?77

Refinement types

common :: XS: SLi1st a -» ys: SList a
> List a
common = 77

Refinement types

common :: XS: SLi1st a -» ys: SList a
-~ v: {Li1st a | elems v = elems xs n elems ys}
common = 7?7

Functional
specification

Library

functions T

_

&

[Polikarpova et. al, 2016]

29

Functional
specification

common = A XS. A ysS.
match xs with
Nil - Nil
cons x xt -
if ! (member x ys)
then common xt ys
else Cons x (common Xt ys)

Library
functions

[Polikarpova et. al, 2016]

30

“Find the intersection of two
sorted lists in linear time”

1B |V}

31

“Find the intersection of two Potential
sorted lists in linear time” l

1B |V}

32

“Find the intersection of two Potential: numeric
sorted lists in linear time” l

{8]v}

Refinement: boolean

33

Resource annotations

common :: XS: SLi1st a -» ys: SList a
-~ v: {L1st a | elems v = elems xs n elems ys}
common = 77

Resource budget

common :: XS: SList al' - ys: SList al
-~ v: {L1st a | elems v = elems xs n elems ys}
common = 77

Synthesize with ReSyn

SList a! - ys: SList al

common :: XS:
- v: {List a |
common = 7?7
member 7
cons, Nil, .. *‘?k
~J

< —

elems v

elems xs n elems ys}

36

Components: member

member :: z:a - zs: List a
- v:{Bool|v = (x € elems xs)}

Components: member

member :: z:a - zs: List al
- v:{Bool|v = (x € elems xs)}

Components: member

member :: z:a - zs: List al
- v:{Bool|v = (x € elems xs)}

Functional
specification

Resource bound

Library
functions

_

»

ReSyn

40

Functional
SpeCification common = A XS. A Ys.

match xs with
’ Nil - Nil

cons x xt -
Resource bound » ReSyn

match ys with
NiTl - NiT
cons y yt -
if x <y
then common xt ys
else if y < x
then common xs yt
else Cons x (common XS ys)

»

Library
functions

41

This talk

2. Analysis

How do we know Ccommohn does not run in linear time?

common = A XS. A VyS.
match xs with
Nil - Nil
cons X xt -
if ! (member x ys)
then common xt ys
else Cons x (common Xt ys)

common = A XS. A yS.
match xs with
Nil - Nil
cons x xt -
if ! (member x ys)
then common xt ys
else Cons x (common X ys)

member :: z:a - zs: List al

YS

-» v:{Bool|v = (x € elems xs)}

44

How do we automate this reasoning?

common = A XS. A VYS.
match xs with
Nil - Nil
cons X Xt -
if ! (member x ys)
then common xt ys
else Cons x (common Xt ys)

common :: XS: SList al! - ys: SList al - v: {List a |..}
common = A XS. A VySsS.
match xs with
Nil - Nil
cons x Xt -
if ! (member x ys)
then common xt ys
else Cons x (common Xt ys)

Can we partition the allotted resources
between all function calls?

common = A XS. A YS. ys - . SL-ist al
match xs with
Nil - Nil
cons X Xt -
if ! (member x ys)
then common xt ys
else Cons x (common Xt ys)

common = A XS. A VYS.
match xs with
Nil - Nil
cons X Xt -
if ! (member x ys)
then common xt ys
else Cons x (common Xt ys)

common = A XS. A VYS.
match xs with

Nil - Nil
cons x Xt -
if ! (member x (ys :: List aP))
then common xt (ys :: List a%)

else Cons x (common Xt ys)

49

common = A XS. A VySsS.
match xs with

NiT - Nil
cons x xt -
1T ! (member x (ys :: List aP))

then common xt ys
else Cons x (common Xt ys)

50

member :: z:a - zs: List al -» v:{Bool]..}

common = A XS. A VySsS.
match xs with
Nil - Nil
cons x Xt -
1T ! (member x (ys :: List ar))
then common xt ys
else Cons x (common Xt ys)

51

member

z:a - zs: List al - v:{Bool]..}

List aP <:

member x (ys :: List aP)

List al

52

a<:b P = (

aP <: b

List aP <: List bd

member ::

z:a - zs: List al - v:{Bool]..}

List aP <: List al
p>1

member x (ys :: List aP)

54

common :: xs: SList al - ys: SList a! - v: {List a |..}

common = A XS. A VySsS.
match xs with
Nil - Nil
cons x Xt -
if ! (member x ys)
then common xt (ys :: List a%)
else Cons x (common Xt ys)

55

common ..

XS.

SList al » ys: SList al - v: {List a |..}

List a9 <: List al
q>1

common xt (ys :: List a%)

56

Sharing — SList al Y SList aP, SList af

common = A XS. A VySsS.
match xs with
NiTl - Nil
cons x xt -
if ! (member x ys)
then common xt ys
else Cons x (common Xt ys)

57

Sharing — SList al Y SList aP, SList a¢

I 1=p+q

common = A XS. A VySsS.
match xs with
Nil - Nil
cons x Xt -
if ! (member x ys)
then common xt ys
else Cons x (common Xt ys)

58

Sharing — SList al Y SList aP, SList af

T

= P + (
common = A XS. A VySsS. > 1
match xs with P =
NiT - NiT qg > 1
cons x xt -
it ! (member x ys) .
then common xt ys Subtyping

else Cons x (common Xt ys)

59

60

SMT

Q Al o
I o

61

This talk

3. Search

Enumerate-and-check

Whole-program

Synthesizer Resource
Analysis

Enumerate-and-check Resource-Guided Synthesis

M=)

Whole-

Synthesis

t 3

program
Resource
Analysis

s

»

Local Resource Analysis

64

Reject impossible programs early

common = A XS. A yS.
match xs with
NiTl - Nil
cons X Xt -
if ! (member x ys)
then common xt ys
else ?7?

Reject impossible programs early with local analysis

common = A XS. A yS.
match xs with
Nil - Nil
cons X Xt -
if ! (member x ys)
then common xt ys
else 77

Reject impossible programs early with local analysis

common = A XS. A yS.
match xs with |
N1T - N3

67

Reject impossible programs early with local analysis

common = A XS. A yS.
match xs with
Nil - Nil
cons x Xt -
if ! (member x ys)
then common ys 7?77
else 77

Evaluation

Evaluation

1. Can ReSyn generate faster programs than Synquid?

Evaluation

1. Can ReSyn generate faster programs than Synquid?

2. How much longer does ReSyn take to generate code?

Evaluation

1. Can ReSyn generate faster programs than Synquid?
2. How much longer does ReSyn take to generate code?

3. Is local resource analysis effective at guiding the search?

1. Can ReSyn generate faster programs?

1. Can ReSyn generate faster programs?

Generated by Synquid

« Generated by ReSyn

Require super-linear bound

74

1. Can ReSyn generate faster programs?

Generated by Synquid

« Generated by ReSyn

Require super-linear bound

.

Improved by ReSyn

75

1. Can ReSyn generate faster programs?

{n Generated by ReSyn

59

ﬁ Improved by ReSyn

76

compress: Remove adjacent duplicates

compress XxXs = compress XxXs =
match xs with match xs with
Nil - Nil Nil - Nil
cons x3 x4 - cons x3 x4 -
match compress x4 with match compress x4 with
Nil - Cons x3 Nil Nil - Cons x3 Nil
Ccons x10 x11 - Cons x10 x11 -
if x3 == x10 if x3 == x10
then compress x4 then Cons x10 x11
else Cons x3 (Cons x10 x11) else Cons x3 (Cons x10 x11)

O(2") =) O(n)

Synquid ReSyn

77

1nsert: Insert into a sorted list

insert x xs = insert X Xxs =
match xs with match xs with
Nil - Cons X Nil Nil - Cons X Nil
cons y ys - - cons y ys -
if x <y if x <y
then Cons x (insert y ys) then Cons x (Cons y ys)
else Cons y (insert X ys) else Cons y (insert x ys)

O(n) =) O(n)

Synquid ReSyn

78

insert :: Xx:a - XS: SList aif x> v then 1 else 0
-» v:{SL1st a | elems v = elems xs U {x}}

insert x xs = insert X Xxs =
match xs with match xs with
Nil - Cons X Nil Nil - Cons X Nil
cons y ys - - cons y ys -
if x <y if x <y
then Cons x (insert y ys) then Cons x (Cons y ys)
else Cons y (insert X ys) else Cons y (insert x ys)

O(n) =) O(n)

“One recursive call per element in
xs that is smaller than x” ..

2. How do synthesis times compare?

l ReSyn

M Synquid

Synthesis Time (s)

______ L ________________ ... nlh l“l LI'\. .. . LALL.

List Tree BST B y RBT AVL Use

80

2. How do synthesis times compare?

Median: 2.5x slower

B ReSyn

M Synquid

Synthesis Time (s)

...... L nlh l“l L.Ill. .. . LALL.

List Tree BST B y RBT AVL Use

81

2. How do synthesis times compare?

!

ReSyn finds faster
implementation

!

H ReSyn

M Synquid

Synthesis Time (s)

!

...... L nlh l“l LI' lll

List Tree BST B y RBT AVL Use

82

2. How do synthesis times compare?

!

Dependent bounds

l ReSyn

1 M Synquid

Synthesis Time (s)

u

2: ______ In ________________ ... nll. llll illl' . .. il l

List Tree BST B y RBT AVL Use

83

3. Does local resource analysis guide synthesis?

3. What happens if the analysis is non-local?

3. What happens if the analysis is non-local?

4m ReSyn

Enumerate-and-check

Timeout > 600s

86

3. What happens if the analysis is non-local?

common = A XS. A ysS.
match xs with
Nil - Nil
cons x xt -

common = A XS. A yS. match ys with
match xs with Nil - Nil

Nil - Nil Cons y yt -
cons X Xt - ifx <y
if !(member x ys) then common xt ys
then common xt ys else if y < x
else Cons x (common X ys)

then common xs yt
else Cons x (common xs ys)

Timeout > 600s

87

What we had

“Find the intersection
of two sorted lists”

¥

@

O(m-n)

What we have now

“Find the intersection of two
sorted lists in linear time”

¥

@

O(m+n)

https://bitbucket.org/tjknoth/resyn

